Diversity and evolution in the zoanthid genus Palythoa (Cnidaria: Hexacorallia) based on nuclear ITS-rDNA

J. D. Reimer \cdot K. Takishita \cdot S. Ono • T. Maruyama

Received: 22 September 2006 / Accepted: 16 February 2007 / Published online: 12 April 2007
© Springer-Verlag 2007

Abstract

Previous phylogenetic studies based on mitochondrial DNA markers have suggested that the zoanthid genus Palythoa may consist of both Palythoa species (Palythoa tuberculosa) and species formerly assigned to the genus Protopalythoa (Palythoa mutuki, Palythoa heliodiscus). In the present study various Palythoa spp. samples collected primarily from southern Japan with additional samples from the Indo-Pacific and Caribbean Sea were examined. The nuclear internal transcribed spacer of ribosomal DNA (ITS-rDNA) was sequenced and aligned for phylogenetic analyses to further investigate the relationship between P. tuberculosa, P. mutuki, and P. heliodiscus. ITSrDNA analyses showed species groups forming monophylies with similar topology but with much higher resolution than seen for mitochondrial phylogenetic analyses. The results also confirmed the very close relationship of P. tuberculosa and P. mutuki. Some specimens appeared to be a potentially undescribed Palythoa species (designated Palythoa sp. sakurajimensis). Additionally, ITS-rDNA

[^0]sequences of P. mutuki and P. tuberculosa showed additive polymorphic site, demonstrating for the first time a potential history of reticulate evolution in Palythoa.

Keywords Anthozoa • Reticulate evolution . ITS-rDNA • Zoanthid • Palythoa

Introduction

The zoanthid genus Palythoa (Cnidaria: Hexacorallia) is common in shallow subtropical and tropical waters throughout the world. Although there are 193 species mentioned in the literature (Fautin 2006) it is likely that many of these nominal species have been re-described and that the true diversity of species in Palythoa is lower than this number (see Reimer et al. 2006c).

Traditional classification of Palythoa spp. has been largely based on morphological characteristics such as polyp shape, oral disk size and diameter, and tentacle number (see Ryland and Lancaster 2003). Additionally, Palythoa spp. were defined as having embedded "immersae" polyps and the related proposed genus Protopalythoa consisted of similar but "liberae"-polyped (non-embedded polyps) species (Pax 1910). However, using molecular markers (mitochondrial cytochrome oxidase subunit I [COI] and mitochondrial 16 S ribosomal DNA sequences [mtDNA 16 S rDNA]), it has recently been shown that Palythoa and Protopalythoa have a very close relationship up to the level of congeners (Reimer et al. 2006c), and that these two taxa should be combined into a single genus, Palythoa. In addition, data from the closely related genus Zoanthus have shown that polyp shape and other morphological characters are not necessarily good indicators of relatedness (Reimer et al. 2006b).

Up until now, molecular phylogenetic analyses of Palythoa have relied exclusively upon mitochondrial DNA markers (Sinniger et al. 2005; Reimer et al. 2006c), which have a slow rate of evolution in anthozoans compared to other animals (Shearer et al. 2002). For example, Palythoa tuberculosa and Palythoa mutuki only differ by 1-2 sites over 870 base pairs (bp) in mtDNA 16 S rDNA (Reimer et al. 2006c). On the other hand, nuclear internal transcribed spacer of ribosomal DNA (ITS-rDNA) has been successfully used in a variety of other hexacorallian taxa to delineate boundaries between many species (e.g., see Hunter et al. 1997). ITS-rDNA, despite the potential presence of multiple copies (Marquez et al. 2003), has been particularly useful in exploring evolutionary patterns in closely related groups due to its extremely non-conservative nature (e.g., Hunter et al. 1997; Odorico and Miller 1997; Medina et al. 1999; van Oppen et al. 2000, 2002; Diekmann et al. 2001; Marquez et al. 2003; Fukami et al. 2004).

It has been proposed that the apparently unclear species boundaries in many genera of corals may at least partially be due to interspecific hybridization and subsequent reticulate evolution (Veron 1995). Many different species and genera of Hexacorallia have also been shown to reproduce in synchronous phase with the moon in mass spawning events (see Levitan et al. 2004; Penland et al. 2004; Ono et al. 2005), suggesting that hybridization, reticulate evolution and/or introgression (hybrids backcrossing with parents) in Anthozoa may be more widespread than it is currently known.

In this study, a nuclear marker (ITS-rDNA) was applied to: (1) obtain a phylogeny of this genus with improved resolution to confirm or refute the previous hypothesis that Palythoa and Protopalythoa are congeneric and (2) to examine the possibility of reticulate evolution in Palythoa spp.

Materials and methods

Sampling

Samples of Palythoa spp. were collected from several sites in Japan (Fig. 1) as well as from the Indian and Atlantic oceans between January 2004 and May 2006 (Table 1), and stored in $80-100 \%$ ethanol at -20° C. Samples (Fig. 2) included specimens both of the immersae 'Palythoa' morphology (nominal P. tuberculosa, as well as a sample of Palythoa cf. caribaeorum) and the liberae 'Protopalythoa' morphology (nominal P. mutuki, Palythoa heliodiscus, and unidentified specimens) (see Reimer et al. 2006c for species' details). As samples were collected, in situ photographs were taken to assist in identification and for collection of morphological data (oral disk/polyp diameter, color, tentacle count, polyp form). Sample nomenclature is explained in the notes in Table 1.

DNA extraction, PCR amplification, cloning, and sequencing

DNA was extracted from samples weighing 5-20 mg using a spin-column DNeasy Animal Extraction protocol (Qiagen, Santa Clarita, CA, USA). PCR amplification using the genomic DNA as a template was performed using HotStarTaq DNA polymerase (Qiagen, Tokyo, Japan) according to the manufacturer's instructions. Mitochondrial 16S rDNA was amplified following procedures outlined in Sinniger et al. (2005). The ITS-rDNA region (the 3^{\prime} end of 18 S rDNA, ITS-1, 5.8S rDNA, ITS-2, and the 5^{\prime} end of 28 S rDNA) was amplified following procedures outlined in Reimer et al. (2007). The amplified products were visualized by 1.5% agarose gel electrophoresis. Some PCRamplified DNA fragments were cloned and analyzed

Fig. 1 Map showing sampling locations of Palythoa spp. in this study

Table 1 Palythoa samples used in this study

Sample name ${ }^{\text {a }}$	Location ${ }^{\text {b }}$	Depth	Sampling date	Collected by ${ }^{\text {c }}$	Morphological identification	mtDNA 16 S rDNA Accession number	ITS-rDNA Accession number	Phylogenetic conclusion
PhErabuKaitol	Kaito, Erabu	-19.0	May 2005	JDR	P. heliodiscus	AB219224 ${ }^{\text {d }}$	DQ997882	P. heliodiscus
PhIshigaki Kata2	Kataguwa, Ishigaki	-9.5	Feb 2005	JDR	P. heliodiscus	DQ997859	DQ997885	P. heliodiscus
PhIshigaki Kata3	Kataguwa, Ishigaki	-9.5	Feb 2005	JDR	P. heliodiscus	NA	DQ997884	P. heliodiscus
PhIshigaki Kata5	Kataguwa, Ishigaki	-10.0	Feb 2005	JDR	P. heliodiscus	DQ997843	NA	P. heliodiscus
PhIshigaki Kata11	Kataguwa, Ishigaki	-12.0	Dec 2005	JDR	P. heliodiscus	DQ997861	DQ997880	P. heliodiscus
PhSaipan LauLau1	Lau Lau, Saipan	-3.0	Dec 2004	JDR	P. heliodiscus	AB219223 ${ }^{\text {d }}$	DQ997883	P. heliodiscus
PhSaipan LauLau2	Lau Lau, Saipan	-2.0	Dec 2004	JDR	P. heliodiscus	DQ997844	DQ997881	P. heliodiscus
PWakayama Shira1	Shirahama, Wakayama	+0.5	Apr 2006	JDR and HF	unknown Palythoa sp.	DQ997863	DQ997887	P. sp. sakurajimensis
PSakura Hakama1	Hakamagoshi, Sakurajima	-4.0	Feb 2006	JDR, SO, JT, and AI	unknown Palythoa sp.	DQ997842	DQ997886	P. sp. sakurajimensis
PEWanjo N1	Wanjo-north, Erabu	$+0.5$	May 2006	JDR	unknown Palythoa sp.	DQ997862	NA	P. sp. sakurajimensis
PmMiyakeIzuI1	Izushita, Miyakejima	0.0	June 2005	JDR	P. mutuki 1	AB219225 ${ }^{\text {d }}$	DQ997889	P. mutuki 1
PmYakuSango1	Sangohama, Yakushima	0.0	June 2003	JDR	P. mutuki 1	AB219222 ${ }^{\text {d }}$	DQ997890	P. mutuki 1
PmYaku Sango2	Sangohama, Yakushima	0.0	July 2004	JDR	P. mutuki 1	DQ997875	DQ997892	P. mutuki 1
PmAmami Tomoril	Tomori, Amami	+0.5	Aug 2004	JDR	P. mutuki 2	AB219220 ${ }^{\text {d }}$	DQ997891	P. mutuki 2
PmAmami Tomori2	Tomori, Amami	+1.0	Aug 2004	JDR	P. mutuki 2	AB219221 ${ }^{\text {d }}$	NA	P. mutuki 2
PmErabu Sumiyoshil	Sumiyoshi, Erabu	+0.5	May 2006	JDR	P. mutuki 1	DQ997847	DQ997894	P. mutuki 1
PmIriomote Hoshil	Hoshizuna, Iriomote	0.0	Feb 2006	JDR	P. mutuki 2	DQ997841	DQ997888	P. mutuki 2
PmIriomote Haemida3	Haemida, Iriomote	0.0	Feb 2006	JDR	P. mutuki 2	DQ997840	DQ997893	P. mutuki 2
PtMiyakeIzu1	Izushita, Miyakejima	-2.0	June 2005	JDR	P. tuberculosa	AB219218 ${ }^{\text {d }}$	NA*	P. tuberculosa
PtHachijojima Bora2	Borahama, Hachijojima	-1.5	Jan 2006	JDR	P. tuberculosa	DQ997868	DQ997898	P. tuberculosa
PtWakayama Kushi1	Kushimoto, Wakayama	-1.0	Aug 2004	JDR	P. tuberculosa	DQ997874	DQ997899	P. tuberculosa
PtOtsuki Nishidomari 1	Nishidomari, Otsuki	-6.0	Jan 2006	JDR	P. tuberculosa	DQ997857	NA	P. tuberculosa
PtOtsuki Nishidomari2	Nishidomari, Otsuki	-4.0	Jan 2006	JDR	P. tuberculosa	DQ997867	NA	P. tuberculosa
PtOtsuki Nishidomari3	Nishidomari, Otsuki	-3.0	Jan 2006	JDR	P. tuberculosa	DQ997853	DQ997939	P. tuberculosa
PtOtsuki Futabae1	Futabai, Otsuki	-12.0	Jan 2006	JDR	P. tuberculosa	DQ997865	$\begin{aligned} & \text { DQ997918, } \\ & 924-926,944,945^{\text {f }} \end{aligned}$	P. tuberculosa
PtYakuSango3	Sangohama, Yakushima	-12.0	July 2004	JDR	P. tuberculosa	DQ997858	NA	P. tuberculosa
PtYakuSango4	Sangohama, Yakushima	-1.5	July 2004	JDR	P. tuberculosa	DQ997864	$\begin{aligned} & \text { DQ997903, } \\ & 928,935-938^{\mathrm{f}} \end{aligned}$	P. tuberculosa
PtAmami Tomori2	Tomori, Amami	-1.5	Aug 2004	JDR	P. tuberculosa	DQ997839	DQ997897	P. tuberculosa
PtAmami Bashayama1	Bashayama, Amami	-2.0	Oct 2005	JDR	P. tuberculosa	DQ997845	DQ997923	P. tuberculosa
PtAmami Bashayama2	Bashayama, Amami	-2.0	Oct 2005	JDR	P. tuberculosa	DQ997851	DQ997900	P. tuberculosa

Table 1 continued

Sample name ${ }^{\text {a }}$	Location ${ }^{\text {b }}$	Depth	Sampling date	Collected by ${ }^{\text {c }}$	Morphological identification	mtDNA 16S rDNA Accession number	ITS-rDNA Accession number	Phylogenetic conclusion
PtErabuWanjo2	Wanjo, Erabu	-2.0	May 2006	JDR	P. tuberculosa	DQ997850	NA	P. tuberculosa
PtErabuWanjo3	Wanjo, Erabu	-2.0	May 2006	JDR	P. tuberculosa	DQ997846	DQ997902	P. tuberculosa
PtErabu Sumiyoshi2	Sumiyoshi, Erabu	-9.0	May 2006	JDR	P. tuberculosa	DQ997855	NA	P. tuberculosa
PtYoronShin1	Shin's Reef, Yoron	-1.0	May 2005	JDR	P. tuberculosa	AB219219 ${ }^{\text {d }}$	DQ997921	P. tuberculosa
PtYoronShin 2	Shin's Reef, Yoron	-2.0	May 2005	JDR	P. tuberculosa	DQ997877	NA	P. tuberculosa
PtYoron Chabana2	Chabana, Yoron	-2.0	May 2005	JDR	P. tuberculosa	DQ997879	DQ997922	P. tuberculosa
PtChibishi Naga1	Nagannu-kita, Chibishi	-3.0	June 2004	JDR	P. tuberculosa	DQ997860	$\begin{aligned} & \text { DQ997896, } \\ & 927,930,932-934^{\mathrm{f}} \end{aligned}$	P. tuberculosa
PtChibishi Naga2	Nagannu-kita, Chibishi	-4.0	June 2004	JDR	P. tuberculosa	DQ997869	NA	P. tuberculosa
PtKerama Kuro3	Kuroshima-kita, Kerama	-2.0	June 2004	JDR	P. tuberculosa	DQ997856	NA	P. tuberculosa
PtKerama Paradise 1	Paradise-Iso, Kerama	-7.0	June 2004	JDR	P. tuberculosa	DQ997854	NA	P. tuberculosa
PtIshigaki Onsen1	Onsen, Ishigaki	-8.5	Feb 2005	JDR	P. tuberculosa	NA	DQ997919, $929{ }^{\text {f }}$	P. tuberculosa
PtIshigaki Katal	Kataguwa, Ishigaki	-10.0	Feb 2005	JDR	P. tuberculosa	DQ997866	DQ997920	P. tuberculosa
PtIshigaki Kata4	Kataguwa, Ishigaki	-10.0	Feb 2005	JDR	P. tuberculosa	DQ997873	NA	P. tuberculosa
PtIshigaki Kata6	Kataguwa, Ishigaki	-12.0	Dec 2005	JDR	P. tuberculosa	DQ997852	NA	P. tuberculosa
PtIriomote Hoshi1	Hoshizuna, Iriomote	0.0	Feb 2006	JDR	P. tuberculosa	DQ997848	DQ997904-917 ${ }^{\text {f }}$	P. tuberculosa
PtSaipan LauLau1	Lau Lau, Saipan	-3.0	Dec 2004	JDR	P. tuberculosa	DQ997872	DQ997895	P. tuberculosa
PMadagascar 289	Piscine-Sakatia Madagascar (Indian)	-10.0	July 2005	FS	Palythoa sp.	DQ997878	DQ997901	P. tuberculosa
PtIsrael1	Eilat, Israel (Indian)	-3.0	May 2006	OP	P. tuberculosa	DQ997849	DQ997931, 940, $941{ }^{\text {f }}$	P. tuberculosa
PtIsrael2	Eilat, Israel (Indian)	-1.0	May 2006	OP	P. tuberculosa	DQ997876	NA	P. tuberculosa
PcHond1	Utila, Honduras (Atlantic)	-8.0	Feb 2004	FS	P. caribaeorum	NA	DQ997942, 943, $946{ }^{\text {f }}$	P. tuberculosa group
ZsSH23	Hakamagoshi, Sakurajima	-9.0	July 2004	JDR	Z. sansibaricus	AB219187 ${ }^{\text {e }}$	NA	Z. sansibaricus
ZsES1	Sumiyoshi, Erabu	0.0	May 2006	JDR	Z. sansibaricus	DQ997871	NA	Z. sansibaricus
ZgYS1	Sangohama, Yakushima	-1.5	July 2004	JDR	Z. gigantus	AB219192 ${ }^{\text {e }}$	NA	Z. gigantus
ZkYS1	Sangohama, Yakushima	-1.5	July 2004	JDR	Z. kuroshio	AB219191 ${ }^{\text {e }}$	NA	Z. kuroshio
ZSH50	Hakamagoshi, Sakurajima	-5.0	Feb 2005	JDR	Zoanthus sp.	DQ997870	NA	Z. kuroshio group

* NA data not acquired
 when only genus name was known, no species designation was added to the sample name
${ }^{\mathrm{b}}$ Locations for samples from oceans other than the Pacific indicated in parentheses. All locations in Japan unless otherwise noted
${ }^{c}$ Name abbreviations: $\mathrm{JDR}=\mathrm{J}$. Reimer, $\mathrm{HF}=\mathrm{H}$. Fukami, $\mathrm{SO}=\mathrm{S} . \mathrm{Ono}, \mathrm{JT}=\mathrm{J} . \mathrm{T}$ sukahara, $\mathrm{AI}=\mathrm{A} . \mathrm{Iwama}, \mathrm{FS}=\mathrm{F}$. Sinniger, $\mathrm{OP}=\mathrm{O} . \mathrm{Polak}$
${ }^{d}$ From Reimer et al. (2006c)
${ }^{e}$ From Reimer et al. (2006a)
${ }^{f}$ Samples with more than one ITS-rDNA sequence Accession Number were cloned. Clones are indicated in Fig. 4 by sequences with hyphenated sample numbers

Fig. 2 a Palythoa tuberculosa at Hoshizuna, Iriomote, Okinawa, depth 0.5 m . Note the two colonies with different coloration. b Palythoa mutuki 2 at Haemida, Iriomote, Okinawa, depth 0.0 m , c P. mutuki 1 at Izushita, Miyakejima, Tokyo, depth 0.0 m . Note the differences in oral disk coloration and the slight difference in polyp thickness between P. mutuki 1 and P. mutuki 2. d Palythoa sp. sakurajimensis at Hakamagoshi, Sakurajima, Kagoshima, depth 4.0 m , and e Palythoa heliodiscus at Sumiyoshi, Erabu, Kagoshima, depth 5.0 m. Scale bars 1 cm

following procedures outlined in Reimer et al. (2007). Between 2 (sample PtIsO1) and 14 (sample PtIrHo1) clones were sequenced (see Table 1).

Phylogenetic analyses

New sequences obtained in the present study were deposited in DDBJ and GenBank (accession numbers DQ997839-DQ997946). By using CLUSTAL X version 1.8 (Thompson et al. 1997), the nucleotide sequences of mt 16 S rDNA from samples were aligned with previously published mtDNA 16S rDNA sequences (Table 1) from Palythoa (AB219218-AB219225), and Zoanthus spp. sequences (AB219187, AB219191, AB219192) were used as the outgroup. Zoanthus ITS-rDNA sequences (particularly ITS-1 and ITS-2 spacers) were highly divergent from Palythoa sequences (see Reimer et al. 2007) and thus an ITS-rDNA alignment consisting only of Palythoa sequences was generated, using Palythoa heliodiscus sequences as the outgroup for the subsequent phylogenetic analyses. The alignments were inspected by eye and manually edited. All ambiguous sites were removed from the dataset before phylogenetic analyses. Consequently, two alignment datasets were generated: (1) 759 alignment positions of 52
sequences (mtDNA 16S rDNA); and (2) 686 alignment positions of 67 sequences (ITS-rDNA). The alignment data are available on request from the corresponding author and also from the European Molecular Biology Lab (EMBL) (alignment numbers: mtDNA 16S rDNA = ALIGN_001072, ITS-rDNA = ALIGN_001073).

The alignments of mtDNA 16 S rDNA and ITS-rDNA were tested for optimal fit of various nucleotide substitution models using MODELTEST version 3.06 (Posada and Crandall 1998). The base frequencies, proportion of invariable sites (and a gamma distribution) were estimated from the datasets. For the mtDNA 16 S rDNA and ITS-rDNA datasets, the TN model (Tamura and Nei 1993) incorporating invariable sites (TN + I) and the Hasegawa, Kishino and Yano (HKY) model (Hasegawa et al. 1985) incorporating invariable sites and a discrete gamma distribution (four categories) ($\mathrm{HKY}+\mathrm{I}+\Gamma$) were selected by MODELTEST, respectively. The maximum-likelihood (ML) analyses with PhyML (Guindon and Gascuel 2003) of these datasets were independently performed using an input tree generated by BIONJ (Gascuel 1997) with the models selected by MODELTEST. PhyML bootstrap trees (500 replicates) were constructed using the same parameters as the individual ML trees.

ML distances of the two datasets were calculated under the optimal models described above with PAUP* Version 4.0 (Swofford 1998). Distance trees were constructed using the neighbor-joining (NJ) method (Saitou and Nei 1987). The ML distance bootstrap analyses with 1,000 replicates were also performed.

Bayesian trees were reconstructed by using the program MrBayes 3.1.2 (Ronquist and Huelsenbeck 2003) under the general time reversible (GTR) model (Rodriguez et al. 1990) of nucleotide substitution incorporating invariable sites $(\mathrm{GTR}+\mathrm{I})$ for the mtDNA 16 S rDNA dataset, and under $\mathrm{HKY}+\mathrm{I}+\Gamma$ for the ITS-rDNA dataset [both models selected by MrModeltest (Nylander 2004. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University)]. One cold and three heated Markov chain Monte Carlo (MCMC) chains with defaultchain temperatures were run for $1,000,000$ generations, sampling log-likelihoods (InLs), and trees at 100-generation intervals (10,000 InLs and trees were saved during MCMC). The likelihood plot for mtDNA 16S rDNA and ITS-rDNA datasets suggested that MCMC reached the stationary phase after the first 30,000 and 300,000 generations, respectively. Thus, the remaining 9,700 and 7,000 trees of mtDNA 16 S rDNA and ITS-rDNA were used to obtain posterior probabilities and branch-length estimates, respectively.

To examine the levels of sequence variation within each ITS-rDNA species group, all obtained sequences of the entire ITS-rDNA region (ITS-1 +5.8 S rDNA + ITS-2, 18 S rDNA and 28 S rDNA portions not included) for each species group were aligned and edited, and the total number of variable sites was estimated.

Results

The mtDNA 16S rDNA tree (Fig. 3) showed P. heliodiscus forming one highly supported clade (ML bootstrap support $=99 \%$, NJ bootstrap support $=96 \%$, but posterior probability of Bayesian inference $[\mathrm{PP}]=0.69$), and the P. mutuki species group derived from P. tuberculosa. P. mutuki was divided into two separate clades (P. mutuki 1 and 2), with P. mutuki 1 differing from P. tuberculosa by 1 bp , and P. mutuki 2 only by 2 bp . Both P. mutuki groups showed generally low bootstrap support values, although the P. mutuki 2 clade has a posterior probability of 0.95 in the Bayesian analysis. Included in the P. tuberculosa species group were distant samples (from Japan) from the Pacific and Indian Ocean (PMadagascar289, PtIsrael1, PtIsrael2), as well as P. cf. caribaeorum from Honduras (PcHond1 = sample PcH1 in Reimer et al. 2006c). While bootstrap probability was relatively low for the monophyly of P. tuberculosa ($\mathrm{ML}=72 \%, \mathrm{NJ}=61 \%$), posterior probability was moderately high (0.90). Additionally,
three unidentified Palythoa samples (PErabuWanjoN1, PSakuraHakama1, PWakayamaShira1) formed a separate clade with relatively low support ($\mathrm{ML}=82 \%$, $\mathrm{NJ}=78 \%$, $\mathrm{PP}=0.80$), designated Palythoa sp. sakurajimensis in this study. Variation between mtDNA 16 S rDNA sequences within species groups was very low, i.e., $<0.5 \%$ (Table 2).

The ITS-rDNA tree (Fig. 4) had four main Palythoa groups, three of which corresponded to known species (P. tuberculosa, P. mutuki, and P. heliodiscus) and the P. sp. sakurajimensis clade comprising two of the 'unknown Palythoa sp.' samples (PSakuraHakama1 and PWakayamaShira1). P. heliodiscus formed a well-supported clade (ML, NJ $=100 \%, \mathrm{PP}=1.00$), as did P. sp. sakurajimensis with moderate to high support (ML $=99 \%$, $\mathrm{NJ}=74 \%, \mathrm{PP}=0.97$). A large clade containing both the separate P. tuberculosa and P. mutuki clades was also moderately to highly supported $(M L=98 \%, ~ N J=61 \%$, $\mathrm{PP}=0.96$), as were both the P. mutuki ($\mathrm{ML}=96 \%$, $\mathrm{NJ}=71 \%, \quad \mathrm{PP}=0.95$) and the P. tuberculosa groups ($\mathrm{ML}=96 \%, \mathrm{NJ}=92 \%, \mathrm{PP}=0.99$) within this larger clade. ITS-rDNA sequences from samples distant from Japan (PMadagascar289, PtIsrael1, PtIsrael2, PcHond1) were clearly within the P. tuberculosa clade.

However, ITS-rDNA showed larger differences between sequences within each species group. P. mutuki formed four separate subclades (two each of P. mutuki 1 and P. mutuki 2) with moderate to very high support, but the two subclades each of P. mutuki 1 and P. mutuki 2 mtDNA 16 S rDNA did not separately form a monphyly with the other subclade of their putative species group in the ITS-rDNA tree (Fig. 4). However, putative (based on mtDNA 16S rDNA) P. mutuki 1 and 2 sequences were not found within the same subclade (Fig. 4). P. tuberculosa also showed intraspecific variation, with samples PtYoronShin1 and PtYoronChabana2 forming a highly supported basal group (ML $=98 \%$, $\mathrm{NJ}=99 \%$, but $\mathrm{PP}=0.54$). In some cases, clones from the same P. tuberculosa specimens clustered together within the same subclade (PtYakuSango4 and PcHond1). In other cases cloned sequences from individual specimens grouped in more than one subclade (PtIriomoteHoshi1, PtOtsukiFutabae1) (Fig. 4). The P. mutuki and P. tuberculosa species groups seemed to be very closely related in comparison to the other Palythoa species groups.

Intraspecific ITS-rDNA sequence variation ranged between $0.4 \% ~(P$. sp. sakurajimensis) and 23.7% (P. tuberculosa) (Table 2). P. heliodiscus $(n=5)$ and P. sp. sakurajimensis $(n=2)$ groups showed little variation in ITS-rDNA sequences within their own species groups for both length and sequence identity (Table 2), although sample sizes were small. On the other hand, P. mutuki and P. tuberculosa groups showed much higher levels of ITS-rDNA length and sequence variation within their respective species groups (Table 2). P. tuberculosa ITS-rDNA sequences,

Fig. 3 Maximum likelihood tree of mitochondrial 16S ribosomal DNA (mtDNA 16 S rDNA) sequences. Values at branches represent ML and NJ bootstrap probabilities, respectively ($>50 \%$). Bayesian posterior probabilities of $>95 \%$ are represented by thick branches. For sample name abbreviations see Table 1

while monophyletic and distinct from other Palythoa species groups, not only showed variability in length and sequences both between samples (Tables 2, 3) but also between cloned sequences within individuals (maximum variation 11.9% [$74 / 621 \mathrm{bp}$] between clones $[n=14]$ from sample PtIriomoteHoshi1). For all four species groups, ITS-1 was found to be the most variable region, followed by ITS-2 and then 5.8 S rDNA, respectively (Table 2).

Discussion

The utility of ITS-rDNA in species delineation of the genus Palythoa

ITS-rDNA has different levels of divergence within different genera of hard corals [i.e., only 2% variation in the Montastraea annularis complex (Medina et al. 1999), 4.9\%
in Madracis spp. (Diekmann et al. 2001), 11% in Porites spp. (Hunter et al. 1997), and almost 60% reported in ITS-2 rDNA of Acropora spp. (Marquez et al. 2003)]. ITS-rDNA in Palythoa spp., while sufficient for separating species groups from one another, does not have the huge variability seen previously between Zoanthus spp., where differences between species groups of up to approximately 70% of base pairs in the ITS-1 region made alignment impossible (see Reimer et al. 2007). As ITS-rDNA variation levels widely vary among hexacorallian genera, it is somewhat difficult to confidently assign the level of taxonomic relationship(s) seen between P. tuberculosa, P. mutuki, P. heliodiscus, and P. sp. sakurajimensis based solely on ITS-rDNA sequences. However, with an examination of both ITS-rDNA and mitochondrial marker data (mtDNA 16S rDNA here and COI—see Reimer et al. 2006c) from Palythoa, it would appear that these four groups have a congeneric-level relationship. Differences in interspecific variation of ITS-rDNA
Table 2 Intraspecific sequence variation levels of ITS-rDNA and mt 16 S rDNA for Palythoa tuberculosa, P. mutuki, P. sp. sakurajimensis and P. heliodiscus
within a genus (relatively lower in Palythoa and higher in Zoanthus) may be due to the examined Palythoa spp. being more recently diverged than Zoanthus spp., or due to much faster ITS-rDNA evolution in Zoanthus. How useful ITSrDNA is in examining congeners from other zoanthid genera besides Palythoa and Zoanthus remains to be seen, although preliminary data indicate it may be useful in distinguishing between Parazoanthus spp. and other genera in the former suborder Brachycnemina (F. Sinniger, personal communication).
5.8S rDNA sequences in the ITS-rDNA region, which clearly resolved the Zoanthus congeners Z. sansibaricus, Z. kuroshio, and Z. gigantus (Reimer et al. 2007), showed no variation between P. tuberculosa and P. mutuki. Similarly, mtDNA COI sequence differences between P. tuberculosa and P. mutuki were not observed, and while mtDNA 16S rDNA does distinguish between P. tuberculosa and P. mutuki, this is only by $1-2 \mathrm{bp}$ (Reimer et al. 2006c). For these reasons it is concluded that the best means of specific Palythoa identification is the analyses of ITS-rDNA (in particular ITS-1 and/or ITS-2) sequences with confirmatory mtDNA 16S rDNA sequences.

Palythoa phylogeny, and comparison with ecological data

Phylogenetic data based on mitochondrial markers (COI and 16 S rDNA) suggest Protopalythoa and Palythoa are one genus [=Palythoa (Reimer et al. 2006c)], and the ITSrDNA analyses in this study further confirm this hypothesis. ITS-rDNA was observed to be more variable than mtDNA 16S rDNA (Table 2). In the ITS-rDNA phylogenetic analyses, P. tuberculosa is sister to P. heliodiscus and P. sp. sakurajimensis but more closely related to P. mutuki (Fig. 4) than to P. heliodiscus or P. sp. sakurajimensis. In the mtDNA 16 S rDNA tree, P. tuberculosa is derived from P. sp. sakurajimensis, and P. mutuki derived from P. tuberculosa (Fig. 3). Despite the ITS-rDNA tree having these differences in topology from the mtDNA 16 S rDNA tree, ITS-rDNA sequences again clearly show the close relationship between P. tuberculosa and P. mutuki (Fig. 4). From both the mtDNA 16 S rDNA and ITS-rDNA results it is concluded that P. mutuki (liberae 'Protopalythoa' morphology) is more closely related to P. tuberculosa (immersae 'Palythoa' morphology) than to other species with Protopalythoa morphology. These results also support the hypothesis posed by Reimer et al. (2006b) that in zoanthids gross morphology (i.e., polyp shape and colony features) often does not reflect relatedness among congeners.

The close relationship inferred between P. tuberculosa and P. mutuki based on DNA sequence data reflects their similar ecological and distribution data, as they often occur sympatrically in shallow areas of high sunlight, water flow and wave activity. P. heliodiscus appears to be somewhat

Fig. 4 Maximum likelihood tree of internal transcribed spacer ribosomal DNA (ITS-rDNA) sequences. Values at branches represent ML and NJ bootstrap probabilities, respectively ($>50 \%$). Bayesian posterior probabilities of $>95 \%$ are represented by thick branches. For sample name abbreviations see Table 1. Sample names with Accession Numbers are from previous studies (see Table 1). Sample names with a hyphenated number or letter ending represent clones. Samples with filled in target symbols are also shown in the alignment in Fig. 5

Table 3 Length variation of different regions of obtained ITS-rDNA sequences for different Palythoa spp

Species/group	n	ITS-1 $^{\text {a }}$	$5.8 S$	ITS-2 $^{\text {a }}$
P. tuberculosa	50	$243-271$	156	$171-192$
P. mutuki	7	$283-312$	156	$168-174$
P. sp. Sakurajimensis	2	389	156	170
P. heliodiscus	6	339	156	203

${ }^{\text {a }}$ Note that ITS-1 and ITS- 2 rDNA sequence lengths are different than in Table 2; sequence lengths here are from unaligned sequences, while Table 2 shows aligned sequence lengths
more distantly related to the other three Palythoa groups and ecologically this species is also somewhat different from the others, as it is often found in deeper areas with much lower sunlight, and thus appears to be more mixotrophic, obtaining energy from both its symbiotic zooxan-
thellae and perhaps directly from particles in the water column.

Despite extensive sampling throughout the course of this study, only three samples of P. sp. sakurajimensis were found, suggesting that this species may be less common or more cryptic than other Palythoa species in the sub-tropical and tropical waters of Japan. More samples are needed before the ecology of this potentially new species group can be discussed, but it is noteworthy that all three samples were found in habitats where other Palythoa species were not found [e.g., at the relatively cold locations (winter minimums approximately $15^{\circ} \mathrm{C}$) of Sakurajima and Shirahama, and relatively high in the tidal zone at Wanjo North, Okinoerabu Island]. This species may be more adapted to "marginal" or variable conditions than other Palythoa species, similar to Zoanthus sansibaricus (found at the colder Sakurajima site) compared to other Zoanthus species in Japan (Reimer et al. 2006a).

Fig. 5 Alignment of the ITS-rDNA region for various Palythoa mutuki and Palythoa tuberculosa species groups' sequences. Areas in open boxes represent shared common areas of sequence variation between species groups, and shaded gray areas represent "minor" areas of sequence variation within a species group (different from the majority of sequences within a species group). Thus, other areas of variation in the P. tuberculosa species group not marked with an open box or a gray

Implications of ITS-rDNA variation within
P. tuberculosa and P. mutuki

Veron (1995) described a theory of reticulate evolution in hard corals. Under this scenario, species groups undergo
area represent differences between all P. mutuki and P. tuberculosa sequences shown. Sample names are abbreviated due to limited space in the alignment: PmMiIl PmMiyakeIzu1, PmES1 PmErabuSumiyoshi1, PmIrHol PmIriomoteHoshi1, PmAT1 PmAmamiTomori1, PtYoS1 PtYoronShin1, PtYoC2 PtYoronChabana2, PtSaiLL1 PtSaipanLauLau1, PtIrHol-6 and 1-10 PtIriomoteHoshil clones 6 and 10, PtYS4 PtYakuSango4
repeated sexual reproductive isolation, differentiation, and secondary contact based on continuously changing patterns of distribution, perhaps due to changing ocean currents and/ or ocean levels. Many hard corals and other Anthozoa (including at least some zooxanthellate Zoantharia-see

Ono et al. 2005) undergo mass spawning events (Levitan et al. 2004; Penland et al. 2004), providing an opportunity for hybridization and reticulate evolution. Many studies have detailed molecular and/or reproductive evidence of potential reticulate patterns in zooxanthellate hard corals (e.g., Odorico and Miller 1997; Hatta et al. 1999; Medina et al. 1999; van Oppen et al. 2000, 2002; Diekmann et al. 2001).

In this study there were moderate amounts of intraspecific variation in ITS-rDNA sequences (see Table 3) from P. mutuki and both intraspecific and intragenomic variation from P. tuberculosa. An examination of the ITS-rDNA sequence alignment reveals potential "reticulate evolution" patterns, such as additive polymorphic sites (APS).

Additive polymorphic sites can potentially indicate hybridization and reticulate evolution, particularly in ITSrDNA (Sang et al. 1995; Campbell et al. 1997; Whittall et al. 2000; Aguilar and Feliner 2003; Feliner et al. 2004). One kind of APS that hints at hybridization is when some sequences share portions of their sequences with sequences normally found only within another clade (Aguilar and Feliner 2003). In the case of P. tuberculosa, samples PtYoronShin1 and PtYoronChabana2 show such a pattern. Both ITS-rDNA sequences are clearly in the P. tuberculosa clade, yet both have two regions that are found in P. mutuki, and not in any other P. tuberculosa sequences (Fig. 5, marked regions 2 and 6). Figure 5 shows 13 main potential ITS-rDNA regions shared between P. mutuki and P. tuberculosa that have this type of APS (numbered areas). The question of whether PtYoronShin1 and PtYoronChabana2 are P. tuberculosa-P. mutuki hybrids or not remains to be investigated, as although PtYoronShin1 displayed "intermediae" polyps more clear and free of the coenenchyme than most P. tuberculosa specimens and reminiscent of P. mutuki, PtYoronChabana2 had "immersae" polyps common to P. tuberculosa.

Another kind of APS that hints at a reticulate history is when observed intragenomic variation patterns (such as an indel, etc.) are also found in other individuals (Sang et al. 1995; Campbell et al. 1997; Whittall et al. 2000; Aguilar and Feliner 2003). This APS type can also be seen in the ITS-rDNA alignment (Fig. 5, grey regions). For example, P. tuberculosa PtIriomoteHoshi1 clones (PtIriomoteHo-shi1-6, PtIriomoteHoshi1-10, i.e., distinct intragenomic sequences) have many variable regions different from each other that are also found in P. tuberculosa sequences from other samples (Fig. 5). It is possible that the results are due to slow concerted evolution with the presence of multiple ITS-rDNA copies (ancestral polymorphism). However, variable ITS-rDNA regions of PtIriomoteHoshi1 match with regions found in other individuals (not only with just other P. tuberculosa specimens but even with P. mutuki sequences-see region 4-Fig. 5), supporting the hybrid-
ization hypothesis. The data suggest that P. tuberculosa and P. mutuki potentially have a history of reticulate evolution.

The data further show that morphology between even closely related zoanthid congeners can vary drastically (as between P. tuberculosa and P. mutuki) and highlight the need for additional genetic investigation of zoanthid diversity. To investigate more fully the possibility of a potential reticulate evolutionary history in Palythoa, studies of sexual reproduction timing and patterns (as conducted in Zoanthus, Ono et al. 2005) need to be conducted. The molecular techniques used in this study to distinguish between congeners and identify a potential reticulate evolutionary history may provide a reliable method for analyses of other Zoantharia groups.

Acknowledgments The authors wish to thank the following people for their support and help throughout the course of this study. Dr. Junzo Tsukahara (Kagoshima University) for his continuing support of zoanthid research; John Byron, Ryan Cox, Dr. Yasuo Furushima (JAMSTEC), Shin Hisashi, Yuichi Nagata, Hideo Noda, Denny Probizanski, Mika Reimer, Kei Sasahara, and Yuki Wada for their help in collecting samples in Japan; Dr. Hironobu Fukami (Kyoto University) for his advice on the nature of the ITS-rDNA region; Omer Polak (Interuniversity for Marine Science, Eilat, Israel) for kindly providing samples from Eilat; Frederic Sinniger (University of Geneva) for productive discussions, comments on this article, and samples from Honduras and Madagascar; and Masoru Kawato and Hirokazu Kuwahara for help with sequencing at JAMSTEC. JDR was supported at JAMSTEC by a Japan Society for the Promotion of Science Post-doctoral fellowship (\#P04868). Dr. Dhugal Lindsay (JAMSTEC) helped with English editing. Fumihito Iwase (BIK) gave us invaluable advice on scientific nomenclature. Three anonymous reviewers greatly improved the quality of this manuscript.

References

Aguilar JF, Feliner GN (2003) Additive polymorphisms and reticulation in an ITS phylogeny of thrifts (Armeria, Plumbaginaceae). Mol Phylogenet Evol 28:430-447
Campbell CS, Wojciechowski MF, Baldwin BG, Alice LA, Donoghue MJ (1997) Persistent nuclear ribosomal DNA sequence polymorphism in the Amelanchier agamic complex (Rosaceae). Mol Biol Evol 14:81-90
Diekmann OE, Bak RPM, Stam WT, Olsen JL (2001) Molecular genetic evidence for probably reticulate speciation on the coral genus Madracis from a Caribbean fringing reef slope. Mar Biol 139:221-233
Fautin DG (2006) Hexacorallians of the World. http://www.geoportal. kgs.ku.edu/hexacoral/anemone2/index.cfm
Feliner GN, Larena BG, Aguilar JF (2004) Fine-scale geographical structure, intra-individual polymorphism and recombination in nuclear ribosomal internal transcribed spacers in Armeria (Plumbaginaceae). Ann Bot 93:189-200
Fukami H, Budd AF, Levitan DR, Jara J, Kersanach R, Knowlton N (2004) Geographic differences in species boundaries among members of the Montastraea annularis complex based on molecular and morphological markers. Evolution 58:324-327
Gascuel O (1997) BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14:685695

Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696-704
Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160-174
Hatta M, Fukami H, Wang W, Omori M, Shimoike K, Hayashibara T, Ina Y, Sugiyama T (1999) Reproductive and genetic evidence for a reticulate evolutionary history of mass-spawning corals. Mol Biol Evol 16:1607-1613
Hunter CL, Morden CW, Smith CM (1997) The utility of ITS sequences assessing relationships among zooxanthellae and corals. Proc 8th Int Coral Reef Symp 2:1559-1602
Levitan DR, Fukami H, Jara J, Kline D, McGovern TM, McGhee KE, Swanson CA, Knowlton N (2004) Mechanisms of reproductive isolation among sympatric broadcast-spawning corals of the Montastraea annularis species complex. Evolution 58:308-323
Marquez LM, Miller DJ, MacKenzie JB, van Oppen MJH (2003) Pseudogenes contribute to the extreme diversity of nuclear ribosomal DNA in the hard coral Acropora. Mol Biol Evol 20:10771086
Medina M, Weil E, Szmant AM (1999) Examination of the Montastraea annularis species complex (Cnidaria: Scleractinia) using ITS and COI sequences. Mar Biotechnol 1:89-97
Odorico DM, Miller DJ (1997) Variation among the ribosomal Internal Transcribed Spacers and 5.8S rDNA among five species of Acropora (Cnidaria; Scleractinia): Patterns of variation consistent with reticulate evolution. Mol Biol Evol 14:465-473
Ono S, Reimer JD, Tsukahara J (2005) Reproduction of Zoanthus sansibaricus in the infra-littoral zone at Taisho Lava Field, Sakurajima, Kagoshima, Japan. Zool Sci 22:247-255
Pax F (1910) Studien an westindischen Actinien. In Spengel JW (ed) Ergebnisse einer Zoologischen Forschungreise nach Westindien von Prof. W. Kukenthal und Dr. R. Hartmeyer im Jahre, 1907. Zoologische Jahrbucher Supplement 11, pp 157-330
Penland L, Kloulechad J, Idip D, van Woesik R (2004) Coral spawning in the western Pacific Ocean is related to solar insolation: evidence of multiple spawning events in Palau. Coral Reefs 23:133140
Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics (Oxf) 14:817-818
Reimer JD, Ono S, Iwama A, Takishita K, Tsukahara J, Maruyama T (2006a) Morphological and molecular revision of Zoanthus (Anthozoa: Hexacorallia) from southwestern Japan with description of two new species. Zool Sci 23:261-275
Reimer JD, Ono S, Iwama A, Tsukahara J, Maruyama T (2006b) High levels of morphological variation despite close genetic relatedness between Zoanthus aff. vietnamensis and Zoanthus kuroshio (Anthozoa: Hexacorallia). Zool Sci 23:755-761
Reimer JD, Ono S, Takishita K, Tsukahara J, Maruyama T (2006c) Molecular evidence suggesting species in the zoanthid genera

Palythoa and Protopalythoa (Anthozoa: Hexacorallia) are congeneric. Zool Sci 23:87-94
Reimer JD, Takishita K, Ono S, Tsukahara J, Maruyama T (2007) Molecular evidence suggesting intraspecific hybridization in Zoanthus (Anthozoa: Hexacorallia). Zool Sci 24 (in press)
Rodriguez F, Oliver JL, Marin A, Medina JR (1990) The general stochiatic model of nucleotide substitution. J Theor Biol 142:485501
Ronquist F, Huelsenbeck JP (2003) Bayesian phylogenetic inference under mixed models. Bioinformatics (Oxf) 19:1572-1574
Ryland JS, Lancaster JE (2003) Revision of methods of separating species of Protopalythoa (Hexacorallia: Zoanthidea) in the tropical West Pacific. Invert Systemat 17:407-428
Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406-425
Sang T, Crawford DJ, Stuessy TF (1995) Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proc Natl Acad Sci USA 92:6813-6817
Shearer TL, van Oppen MJH, Romano SL, Worheide G (2002) Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Mol Ecol 11:2475-2487
Sinniger F, Montoya-Burgess JI, Chevaldonne P, Pawlowski J (2005) Phylogeny of the order Zoantharia (Anthozoa, Hexacorallia) based on mitochondrial ribosomal genes. Mar Biol 147:11211128
Swofford DL (1998) PAUP*. V Phylogenetic analysis using parsimony (*and other methods), version 4. Sinauer Associates, Sunderland
Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512-526
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876-4882
van Oppen MJH, Willis BL, Van Vugt HWJA, Miller DJ (2000) Examination of species boundaries in the Acropora cervicornis group (Scleractinia, Cnidaria) using nuclear DNA sequence analyses. Mol Ecol 9:1363-1373
van Oppen MJH, Willis BL, Rheede TV, Miller DJ (2002) Spawning times, reproductive compatibilities and genetic structuring in the Acropora aspera group: evidence for natural hybridization and semi-permeable species boundaries in corals. Mol Ecol 11:13631376
Veron JEN (1995) Corals of the world: the biogeography and evolution of the Scleractinia. University of New South Wales Press, Sydney
Whittall J, Liston A, Gisler S, Meinke RJ (2000) Detecting nucleotide additivity from direct sequences is a SNAP: an example from Sidalcea (Malvaceae). Plant Biol 2:1-7

[^0]: Communicated by Biology Editor M. van Oppen.
 J. D. Reimer (\triangle) • K. Takishita • T. Maruyama

 Research Program for Marine Biology and Ecology, Extremobiosphere Research Center,
 Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka,
 Kanagawa 237-0061, Japan
 e-mail: jreimer@jamstec.go.jp
 Present Address:
 J. D. Reimer

 Biological Institute on Kuroshio, 560 Nishidomari, Otsuki, Kochi 788-0333, Japan
 S. Ono

 Miyakonojo Higashi High School, Mimata, Miyazaki 889-1996, Japan

