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ABSTRACT

 

Resource selection functions (RSFs) are statistical models defined to be proportional
to the probability of use of a resource unit. My objective with this review is to identify
how RSFs can be used to unravel the influence of scale in habitat selection. In wildlife
habitat studies, including radiotelemetry, RSFs can be estimated using a variety of
statistical methods, all of which can be used to explore the role of scale. All RSFs are
bounded by the resolution of data and the spatial extent of the study area, but also
allow predictor covariates to be measured at a variety of scales. Conditional logistic
regression permits designs (e.g. matched case) that relate the process of habitat
selection to a limited domain of resource units that might better characterize what is
truly ‘available’ to the animal. Scale influences the process of habitat selection, e.g.
food resources are often selected at fine spatial scales, whereas landscape patterns
at much larger scales typically influence the location of home ranges. Scale also
influences appropriate sampling in many ways: (1) heterogeneity might be obliterated
(transmutation) if resolution or grain size is too large, (2) variance of habitat
characteristics might be undersampled if extent or domain is too small, (3) timing
and duration of observations can influence RSF models, and (d) both spatial and
temporal autocorrelations can vary directly with the intensity of sampling. Using
RSFs, researchers can examine habitat selection at multiple scales, and predictive
models that bridge scales can be estimated. Using Geographical Information Systems,
predictor covariates in RSF models can be measured at different scales easily so that
the predictive ability of models at alternative spatial and temporal domains can be
explored by the investigator. Identification of the scale that best explains the data can
be evaluated by comparing alternative models using information-theoretic metrics
such as Akaike Information Criteria, and predictive capability of the models can be
assessed using 

 

k

 

-fold cross validation.
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INTRODUCTION

 

Resource selection functions (RSFs) can be used to characterize

the distribution and abundance of organisms (Boyce & McDonald,

1999; Manly 

 

et al

 

., 2002; Nielsen 

 

et al

 

., 2005). More broadly,

overlays of  RSFs for multiple species can be used to predict

species diversity at a site (Nielsen 

 

et al

 

., 2003). Likewise, species

interactions in space can be modelled using RSF (Johnson 

 

et al

 

.,

2000; Hirzel & Le Lay, 2006). For example, RSFs have been used

to map a predator and prey on the same landscape to identify

habitats where encounters are likely to occur between predator

and prey (Hebblewhite 

 

et al

 

., 2005). Scale is a fundamental

consideration in RSF studies because (1) the scale of the sam-

pling scheme influences the strength of habitat associations, and

(2) ecological processes including habitat selection can occur on

different spatio-temporal scales. RSFs are especially convenient

structures for studying the influence of scale on habitat selection

because they offer a framework that can be used to bridge spatio-

temporal scales.

A RSF is defined as any function that is proportional to the

probability of use (Manly 

 

et al

 

., 2002). In context of scale, RSFs

allow a mixture of sampling scales for covariates to be included in

the same model. In the extremes, scale must be defined relative

to: (1) resolution or grain, and (2) domain or extent (Turner

 

et al

 

., 2001). Resolution reflects how finely a resource unit or

covariate is measured and often is limited by available data,

e.g. a 30-m pixel. Resolution clearly limits the precision of spa-

tial predictions, which appears to be especially important for
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landscape-structure variables. The availability of data and feasi-

bility of data collection can limit the resolution at which an

investigation might take place.

Domain or extent is the size of the area under investigation. In

some cases consistent patterns of habitat selection occur across

spatial domains (Schaefer & Messier, 1995; Resetarits, 2005), but

in other instances RSFs might vary substantially among scales,

and the particular choice of domain depends on the objectives of

the study (Boyce 

 

et al

 

., 2003). Fish predators have been shown to

influence habitat selection by tree frogs at both regional and local

scales leading Resetarits (2005) to conclude that habitat selection

is ‘a critical link between local communities and the regional

dynamics of metacommunities in complex landscapes’. However,

I caution that the scale at which habitat selection is measured can

influence apparent species interactions. For example, mule deer

(

 

Odocoileus hemionus

 

) and white-tailed deer (

 

Odocoileus virgin-

ianus

 

) interactions were studied at different scales in Colorado

(Whittaker & Lindzey, 2004). Although one might have con-

cluded potential competitive interaction based on fine-scale

selection of diet, seasonal spatial segregation at a larger scale

showed that there was little potential for competitive interaction

between the two species.

Beyond the scale components of resolution and extent, sample

units can include covariates measured within buffers of arbitrary

size. For example, we might characterize vegetation type as a

discrete variable within a 30-m pixel, but road density within a

1-km radius buffer as a continuous variable. Such buffers can

be useful for characterizing the context of a resource unit, for ex-

ample, the configuration of vegetation patches can be quantified

using 

 



 

 (McGarigal & Marks, 1995) or other spatial pat-

tern metrics (Perry 

 

et al

 

., 2002), and these context metrics can be

used as covariates in the RSF model. For organisms with large

area requirements, buffers might need to be large depending on

the scale of the ecological processes influencing the use of a

resource unit and the spatial pattern in vegetation (Johnson 

 

et al

 

.,

2004b). For example, landscape heterogeneity measured at large

spatial scales, even larger than the home range, appears to be neces-

sary to characterize habitat selection by mule deer (Kie 

 

et al

 

., 2002).

My objective in this paper is to highlight the importance of

scale in RSF investigations and to suggest some analysis protocols

that allow efficient examination of the role of both temporal and

spatial scales in habitat studies. Although in my outline I discuss

temporal and spatial scales separately, these two dimensions are

not independent. For example, body size is related to home-

range area and longevity (Calder, 1984), i.e. space and time, so

we might expect investigations for large animals to require large

spatial and long temporal scales. Integrating time and space con-

siderations, methods have been proposed to use movement rates

to identify appropriate spatial scales of analysis for RSFs (Nams,

2005), e.g. identifying habitats used for foraging vs. interpatch

movement (Johnson 

 

et al

 

., 2002).

 

SAMPLING DESIGNS

 

The scale of an RSF and the appropriate statistics for analysis are

fundamentally tied to the sampling design. Manly 

 

et al

 

. (2002)

provide a comprehensive review of alternative sampling designs

for estimating RSFs. I will focus discussion on two designs that

are most common in wildlife habitat studies: (1) used/unused or

presence/absence designs, and (2) use/availability or presence/

pseudo-absence designs (Pearce & Boyce, 2006). Scale can be

studied using either of the two designs — primary differences

relate to the feasibility of field sampling and the particular data

available.

In the first design, a random sample of resource units is drawn,

and each is inspected for the presence (= 1) or absence (= 0) of a

species. Typically a generalized linear model (GLM) or a general-

ized additive model (GAM) would be used to estimate a resource

selection function (Manly 

 

et al

 

., 2002; Hirzel & Le Lay, 2006). A

special case of presence/absence is the case-control design where

intensity of sampling of used and unused resource units is not

random (Keating & Cherry, 2004).

One of the common difficulties with a presence/absence

design is called an ‘asymmetry of errors’ where presence is

observed and thereby known with certainty, but absence can be

difficult to evaluate (MacKenzie, 2005). Temporal scale of sam-

pling can be crucial to the correct detection of absences, because

repeated sampling over a longer time might result in the detec-

tion of a presence in a resource unit where the species was ini-

tially absent (Johnson 

 

et al

 

., 2006). This may not a problem if the

spatial and temporal domains of the study are carefully specified.

For example, birds might be sampled using time–area counts for

12 min at sampling locations visited once during the month of

June. But having to restrict the domain of application for the RSF

might limit applications, for example if the objective is to charac-

terize the habitats used by a species for purposes of distribution

mapping.

Problems associated with accurately characterizing unused

resource units or absences often are thought to be a particular

problem for animals because they move around. However,

I believe that the same problems exist for modelling plant dis-

tributions, typically at a much slower temporal scale. Many plants

can exist for years in the seed bank, germinating after heavy rains

or when conditions are otherwise favourable. Likewise many

species of plants may exist undetected until a major disturbance

resets the successional process. Clearly detection error can influ-

ence estimates of RSF models based upon presence/absence data

(Gu & Swihart, 2004), and in some circumstances adjustments

for detection bias are possible (Frair 

 

et al

 

., 2004).

The second design involves contrasting a sample of resource

units where the species is known to occur (= 1) with a random

sample of ‘available’ resource units (= 0) drawn without replace-

ment within the domain of the area of study. We often assume an

exponential or log-linear structure for an RSF:

(1)

for a vector 

 

x

 

 of 

 

k

 

 predictor covariates. The model coefficient, 

 

β

 

i

 

,

for the 

 

i

 

-th habitat covariate, 

 

x

 

i

 

, can be estimated using the corre-

sponding coefficient from logistic regression so long as used

resource units are relatively rare on the landscape (Manly 

 

et al

 

.,

2002).

RSF  ( )  exp(     ...  )= = + + +w x x x xk kβ β β1 1 2 2
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However, the RSF for a used/available design is best inter-

preted as a logistic discriminant function assuming a ratio of

density functions for used (

 

f

 

u

 

) and available (

 

f

 

a

 

) resource units of

the form (Seber, 1984: pp. 308–317):

(2)

where again we estimate 

 

k

 

 model coefficients as in equation 1

using logistic regression (Keating & Cherry, 2004). The primary

distinction here is that used and available resource units are

drawn with replacement, and a resource unit is allowed to appear

in both the used and available samples (Johnson 

 

et al

 

., 2006).

The form of the RSF model is flexible allowing polynomial

terms and/or interaction terms. For example, for two covariates

with both linear and squared terms for the first variable and an

interaction between variables we would write:

(3)

This approach is functionally identical to the distribution mod-

elling used by plant ecologists where available points are labelled

pseudo-absences (Pearce & Boyce, 2006), and is a common

approach for analysing radiotelemetry data in wildlife studies

(Mao 

 

et al

 

., 2005). As a caveat, the probabilities obtained from a

logistic regression equation are not the appropriate values for

such a used/available design (Manly 

 

et al

 

., 2002: p. 100) and one

should use the exponential form of the 

 

w

 

(

 

x

 

) instead (eq. 1 or 2)

to estimate values that are 

 

proportional

 

 to the probability of use.

The RSF does not yield a discrete classification but rather a

relative probability of use which is continuous. Also, the usual

statistical methods for evaluating logistic regression are not

appropriate for such a use-availability design, and the predictive

ability of these models is best evaluated using 

 

k

 

-fold cross valida-

tion (Boyce 

 

et al

 

., 2002; Johnson 

 

et al

 

., 2006). Using this method,

models built using alternative scales can be compared by how

well they predict patterns of use (distribution frequency) on the

landscape.

A variation on the use/availability design is where the patterns

of use on the landscape are characterized by a utilization distri-

bution (UD), e.g. an adaptive kernel home-range estimator

(Marzluff 

 

et al

 

., 2004). With this method the response variable

becomes the intensity of use of a resource unit (pixel) from the

UD, and a GLM is used to model the influence of predictor cov-

ariates as in the RSF. Such a resource utilization function (RUF)

eliminates fine-scale resolution in occurrence data to a varying

degree depending upon the magnitude of the smoothing para-

meter in the utilization distribution.

Yet another approach that has been used to study scale effects

on habitat selection with use/availability data is ecological niche

factor analysis (ENFA; Hirzel 

 

et al.

 

, 2002). Again, predictor vari-

ables are measured at used sites and at random landscape loca-

tions. But no model-selection protocol is followed with ENFA

and all predictor variables are retained in the model. A multi-

variate characterization of the sets of variables is obtained, and

interpretation is based on how the predictor variables are loaded

into factors or summary axes. By including variables measured at

three spatial scales and examining how these variables loaded

into an ENFA for bearded vultures (

 

Gypaetus barbatus

 

), Hirzel

 

et al

 

. (2004) were able to evaluate the importance of habitat

selection at the three scales.

 

CHARACTERIZATION OF ABUNDANCE 
USING RSFS

 

Habitat models can be linked to population models, using the

RSF to distribute individuals in a population across the land-

scape (Boyce & McDonald, 1999). However, scale is of crucial

importance and can have large influence on population estima-

tion. If grain size of the spatial sampling unit is fairly small so that

few individuals are likely to occur within a single resource unit

(pixel), the Boyce and McDonald (1999) method should yield

reasonable results. However, if resource units are large so that a

number of individuals might occur within a single resource unit,

RSFs estimated using logistic regression might not be suitable.

Instead, one could use a zero-inflated binomial model, with no

guarantee that the ecological variables that determine occurrence

in a resource unit will be the same variables that influence abun-

dance within resource units (Nielsen 

 

et al

 

., 2005). As in any such

study using GLMs, one should examine the data to assess which

model is most appropriate. GLM links known to work well

depending on the observed shape of the distribution of the data

include the Poisson, zero-inflated Poisson (Ripley 

 

et al

 

., 2005),

zero-inflated negative binomial (Nielsen 

 

et al

 

., 2005), or some-

times even ordinary least-squares linear regression (Radeloff

 

et al

 

., 2000).

Abundance–occupancy relationships vary with colonization

rate and the spatial distribution of habitats. When colonization

rates are high, patterns of abundance and occupancy tend to be

similar although usually not linear (Gaston 

 

et al

 

., 2000; Freckle-

ton 

 

et al

 

., 2005). But with low to moderate rates of colonization,

as in metapopulations, large-scale patterns can be complicated

by local population processes such as local extinctions (Freckle-

ton 

 

et al

 

., 2005). Such mechanisms can result in RSF models pre-

dicting a relative probability of occurrence that might be poorly

correlated with the spatial pattern of abundance (Nielsen 

 

et al

 

.,

2005), although not necessarily (Ripley 

 

et al

 

., 2005).

 

TEMPORAL SCALE

 

The temporal scale of sampling designs, involving both grain and

extent, can be of crucial significance for the interpretation of

RSFs. Often, for example, habitat-use patterns vary seasonally

requiring that separate models be estimated for each season

(Nielsen 

 

et al

 

., 2003, 2004). Bridging temporal scales might be

necessary, e.g. winter habitats are important determinants of

summer territory selection by yellowhammers (

 

Emberiza cit-

ronella

 

; Whittingham 

 

et al

 

., 2005). In addition, habitat-use pat-

terns can vary depending on the time of day, thereby requiring

careful specification of the temporal scale of sampling (Beyer

& Haufler, 1994; Nielsen 

 

et al

 

., 2004). Radiotelemetry based on

traditional VHF transmitters often involves sampling only during

daylight hours, whereas new GPS-radiotelemetry permits

  

f x

f x
x x xu

a
k k

( )

( )
  exp(     ...  ),= + + +β β β1 1 2 2

w x x x x x x( )  exp(       )= + + +β β β β1 1 2 1

2

3 2 4 1 2
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locations to be recorded at any hour. Likewise, because GPS-

telemetry yields much more location data (fine grain) than VHF

radiotelemetry, home-range size might be considerably larger

than would be estimated with VHF-telemetry. This techno-

logically induced change effectively alters the sampling domain

in within-home-range analyses of habitat selection (Arthur &

Schwartz, 1999).

A less obvious aspect of temporal scale is that different habitats

might be selected in different years. Habitat selection can be

influenced by events such as fires or hurricanes that altered vege-

tation many years previously. Thus, different RSFs might apply

depending on environmental conditions. For example, in roe

deer (

 

Capreolus capreolus

 

) habitat selection was weak during

good years when preferred forage was widely available and sur-

vival did not vary with food availability among sites. However,

animals that selected sites with preferred plants enjoyed signific-

antly higher survival during drought years (Pettorelli 

 

et al

 

.,

2005). To capture such patterns spanning multiple years,

sampling must be on a temporal scale of sufficient duration to

understand the significance of habitat selection that varies

through time.

 

SPATIAL SCALE

 

Identifying the appropriate resolution or sample-unit size

requires a detailed understanding of a species’ ecology, and sev-

eral studies have demonstrated that different ecological processes

may function at different scales (Bissonette 

 

et al

 

., 1997; Mysterud

 

et al

 

., 1999b; Anderson 

 

et al

 

., 2005). The size of sample units can

have a large influence on attributes of habitat as well as popula-

tion parameters, with large grain size effectively averaging out

spatial heterogeneity occurring at finer resolution (Bowyer 

 

et al

 

.,

1996). To select the size of sample units that best explains distri-

bution, model-selection methods can be used to select among

RSFs with alternative buffer sizes within which habitat covariates

are measured. For example, in a study of the northern spotted

owl (

 

Strix occidentalis caurina

 

) sample unit size was identified by

measuring habitat covariates within buffer rings (like dough-

nuts) surrounding sample points, adding covariates measured in

larger buffer rings as justified by data (Meyer 

 

et al

 

., 1998).

Identifying extent often is less objective. If the objective of a

study is to map the distribution of a species across a large area,

then used and available locations obviously should be drawn

from a large area. If the objective is to use an RSF to identify hab-

itats for management such as modifying vegetation by burning

or mechanical methods, landscape or within-home-range scales

of selection probably are most relevant (Johnson, 1980). To cap-

ture the details of forage selection requires that the analysis be

done at yet a finer scale, as along movement paths (Fortin 

 

et al

 

.,

2005b). There is no one best scale for habitat studies. Instead, the

appropriate scale depends on the question at hand (Boyce 

 

et al

 

.,

2003). For example, aligning habitat models with the scale at

which resource management decisions are made might increase

the utility of the models in habitat management (Hobbs, 2003).

Case-control or discrete-choice designs afford unique oppor-

tunities to specify spatial scale of sampling. By choosing available

resource units within buffers surrounding used resource units,

one has the potential to constrain available locations to match

the scale at which the animal is actually selecting habitats (Arthur

 

et al

 

., 1996; Johnson 

 

et al

 

., 2002). For example, if used locations

were obtained using radiotelemetry with locations recorded

every 5 h, it would make sense to plot the distribution of step

lengths for 5-h intervals and use the maximum distance or some

threshold distance to establish the radius for each buffer. Analysis

is done using conditional logistic regression and matching of

used locations with some arbitrary number of random landscape

locations drawn from within each buffered resource unit; some-

times this is called matched-case or paired logistic regression

(Compton 

 

et al

 

., 2002). This approach typically reflects habitat

selection at a finer spatial and temporal scale tied to the actual

location of the animal rather than contrasting use with overall

average habitats within the spatial domain of the investigation.

When trying to apply matched-case results at larger scales, one

approach might be to map only those areas within the buffered

landscape as representing limited available habitats for a species.

Anything beyond such buffers could be masked as unused or

non-habitat.

 

AUTOCORRELATION

 

Scales of both temporal and spatial autocorrelations also are rel-

evant to RSFs (Olivier & Wotherspoon, 2005). Autocorrelation

usually occurs because observations close together in time or

space are likely to be more similar than those that are more

widely separated. As such, autocorrelated observations are not

independent and can interfere with statistical inference. Positive

autocorrelation increases the chance of a type I error, meaning

that we might conclude that there is a pattern when in fact, one

does not exist. Sampling scale and autocorrelation are closely

linked. If sampling the landscape sparsely over a very large scale,

say for modelling distribution of a species, resource units might

be essentially independent and not autocorrelated in space. At

the opposite extreme, GPS-radiotelemetry affords vast quantities

of data taken at short intervals such that the data are often highly

autocorrelated in both space and time.

At fine to moderate spatial scales, landscapes almost always are

autocorrelated, and this autocorrelation is fundamental to spatial

patterns. Instead of being a ‘problem’, we should view autocorre-

lation as one of the structural attributes of the landscape that we

need to understand (Legendre, 1993). One might explore the

autocorrelation structure of landscape variables to identify the

extent necessary to capture the variance of predictor variables.

For example, Bailey 

 

et al

 

. (1996) claimed that abiotic factors were

primary drivers for large-scale distribution patterns of grazing

herbivores, whereas biotic variables such as vegetation were more

important at finer extents. Indeed, abiotic variables such as

topography required a much larger spatial extent to capture the

full range of variability than for vegetation variables in Yellow-

stone National Park documented by plotting the semivariance

for landscape variables (Boyce 

 

et al

 

., 2003). An obvious corollary

is that if the spatial domain is too small, we will not be sampling

the full range of habitat heterogeneity, and as a consequence the
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strength of habitat selection will not be appear to be as strong

(Turner 

 

et al

 

., 1997; WallisDeVries & Laca, 1999; Boyce 

 

et al

 

.,

2003).

A metric that can be used to characterize patterns of spatial

autocorrelation of the landscape and to identify the dominant

scales of heterogeneity is the three-term local quadrat variance

(3TLQV; Dale, 1999). We used the distance at which the 3TLQV

peaked to define a moving window for calculating the density of

vegetation patches, i.e. a regional scale (Johnson 

 

et al

 

., 2004a).

The best RSF models for caribou (

 

Rangifer tarandus

 

) that

migrate vast distances across the Canadian Arctic included only

these regional-scale covariates, whereas RSFs for grizzly bears

(

 

Ursus arctos

 

) and wolves (

 

Canis lupus

 

) were improved by

including both regional and local patch-scale covariates.

Often we can assume that landscape covariates are responsible

for much of the spatial autocorrelation in animal-use locations.

However, after building a RSF containing various landscape cov-

ariates, autocorrelation among the residuals would suggest that

the variance in regression coefficients needs to be adjusted before

applying significance tests (Cressie, 1993). In fact, for coarse-

scale patterns that span the domain of the study area, one might

even use UTM coordinates (including polynomials) as covariates

to remove spatial trend in the data (Heikkinen 

 

et al

 

., 2004).

If autocorrelation remains in the residuals, either temporal or

spatial, one approach is to reduce the degrees of freedom or

inflate the variances for regression coefficients (

 

β

 

i

 

s

 

). Estimates of

model coefficients are unbiased, but the variances are under-

estimated when the autocorrelation is positive. One such post-hoc

adjustment is the Newey–West estimator (Newey & West, 1987;

Nielsen 

 

et al

 

., 2002). Alternatively one can adjust for autocorrela-

tion using a mixed model, or using a data-clustering approach

(Fortin 

 

et al

 

., 2005a). The reason to make these adjustments is to

ensure valid inferences, i.e. to evaluate if a covariate is having a

significant influence in the model. However, as Diniz-Filho 

 

et al

 

.

(2003) point out, accounting for spatial autocorrelation by in-

corporating spatial structure in the error term can de-emphasize

predictors with strong autocorrelation and long-distance clinal

structures, giving more importance to variables acting at

smaller geographical scales. So, if possible, it is best to incorp-

orate all the variables that account for the autocorrelation into

the RSF (until there is zero autocorrelation in the residuals) to

compare predictors at different scales.

Yet another approach is to develop autoregressive models

where occurrence or abundance in nearby resource units is

entered explicitly as a covariate in the RSF model. Specifically,

autologistic regression involves recording a 0 or 1 for absence or

presence of the species in adjacent or nearby resource units

(Augustin 

 

et al

 

., 1996). When the autoregressive term is included

in the model, this accounts for the autocorrelation such that the

variances associated with the RSF model coefficients are unbiased

and can be used to make valid inferences about the contribu-

tion of each covariate to the model. This is fine for hypothesis

testing, but renders the model rather worthless for prediction

because one must know the distribution of the organism to be

able to predict its occurrence! To get around this problem, one

can exploit the spatial autocorrelation explicitly by using kriging

to interpolate between sampling locations, or at a larger scale one

might use the Gibbs sampler to predict occurrence on the land-

scape (Augustin 

 

et al

 

., 1998; Osborne 

 

et al

 

., 2001; Teterukovskiy

& Edenius, 2003). A simpler approach would be to employ a two-

step process using the autologistic model for statistical inference

and then drop the autoregressive term and refit the model again

to obtain a predictive model.

Concern about autocorrelation sometimes may be a Red

Herring (Diniz-Filho 

 

et al

 

., 2003). Although Dark (2004) claimed

that autocorrelation is fundamentally important in building

models of distribution, inspection of her results leads me to

question this conclusion because model coefficients were virtu-

ally identical whether or not a spatially autoregressive model was

used. If model prediction is the objective (Boyce 

 

et al

 

., 2002),

using information-theoretic methods such as Akaike Informa-

tion Criterion to select the best model (Burnham & Anderson,

2002) might be sufficient, and statistical significance might not

be a concern (Johnson, 1999).

 

CONCLUSIONS

 

Generalizations about the effect that scale will have on habitat

selection are few, because of enormous variation in landscapes

and patterns of processes influencing resource selection. For

example, muskoxen (

 

Ovibos moschatus

 

) appeared to select the

same resources across scales, but this appears to be true because

the arctic landscape had relatively little topographic relief and the

same plant (

 

Carex aquatilis

 

) was distributed widely and available

at all scales (Schaefer & Messier, 1995). RSFs can vary among

scales when there exists substantial topographic relief such as in

mountainous habitats (Bailey 

 

et al

 

., 1996; Boyce 

 

et al

 

., 2003) and

when there are trade-offs between selection of different resources

(Mysterud 

 

et al

 

., 1999a,b). Another generalization might be that

foraging considerations are more likely to influence RSFs at finer

scales, whereas predation, dispersal, and other population pro-

cesses that operate across larger scales will exhibit an effect on

resource selection when measured at the correspondingly larger

scales (Anderson 

 

et al

 

., 2005; Fortin 

 

et al

 

., 2005b).

Matching the resolution of resource units with the resolution

of the predictor covariates is usually a good idea (Guisan & Thu-

iller, 2005), but this depends more on the scale at which habitat

selection is occurring. Some predictor covariates might best be

measured at scales much larger than others, e.g. one might meas-

ure road density within a 1-km buffer, whereas forage should be

measured with very fine resolution (Fortin 

 

et al

 

., 2005b).

Autocorrelation is inherent to most, if not, all landscapes, and

should be viewed as an attribute rather than a problem. Measur-

ing patterns of spatial autocorrelation for landscape variables can

help one to select a domain for a study area that will capture the

underlying variability. Incorporating into RSFs the relevant envi-

ronmental covariates can capture this landscape autocorrelation.

Ideally little spatial autocorrelation will remain amongst the

residuals once the effect of the landscape is taken into account.

Residual autocorrelation in distribution due to aggregation (pos-

itive) or competitive interactions (negative) can be modelled

using autologistic regression (Augustin 

 

et al

 

., 1996).
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Resource utilization functions (RUFs) entail estimating the

intensity of use of the landscape with some home-range algo-

rithm, e.g. the adaptive kernel method (Marzluff 

 

et al

 

., 2004). As

such, considerable smoothing of the distribution is guaranteed,

and we lose the ability to detect fine-scale habitat selection

despite the fact that statistical inference adjustments for auto-

correlation have been developed (Hepinstall 

 

et al

 

., 2003). In other

words, by using the utilization distribution, RUFs guarantee

substantial spatial autocorrelation in the patterns of use. If the UD

smoothing compares favourably with the spatial autocorrelation

of the landscape, or if the animals are using the landscape at a

coarse scale, RUFs might perform similarly to RSFs. My concern

is that considerable information about fine-scale habitat selec-

tion might be lost by using RUFs, so for reasons of scale I fail to

see advantages to RUFs over RSFs.

Despite the paucity of generalizations that have emerged, it

is clear that both spatial and temporal scales can be major con-

siderations in efforts to model habitat selection by animals. RSF

model coefficients, model predictive ability, and statistical infer-

ence can be influenced by the scale identified by the investigator,

so it is crucial that the researcher understand the consequences of

scale. More importantly, the process of habitat selection is funda-

mentally affected by ecological processes operating at different

scales. Ecologists are still at a fairly naïve pattern-documentation

phase in understanding the importance of scale. RSFs can be

a powerful tool for identifying and modelling such scale-

dependent processes.
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