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Abstract

Heterogeneous usage of space by individual animals or animal populations is partly due to their preference for

particular resources that are, themselves, heterogeneously distributed. When all points in the environment are equally

accessible, a direct relationship between usage and preference can be assumed. However, when accessibility is restricted,

spatial variations in usage can no longer be attributed entirely to preference. In such cases, it is necessary to control for

the effects of accessibility on observed usage before conclusions about preference can be drawn. In this paper, I develop

a modelling framework that treats the use of space by animals as a joint function of preference and accessibility. I

specify a null version of the framework that assumes no preference and propose that its output can be used to control

for the effect of accessibility on the observed, spatial distribution of usage. I briefly discuss how the framework can

subsequently be used to provide insights about the animals’ preference for different resources and types of movement,

and to predict usage in areas where no usage data exist. I explore the properties of the methodology using data from a

population of simulated animals and present the first results of its application to a sub-set of the British population of

grey seals (Halichoerus grypus ).
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1. Introduction

Quantifying habitat preference is ‘of particular

interest because it provides fundamental informa-

tion about the nature of animals and how they

meet their requirements for survival’ (Manly et al.,

1993). This information is vital for the conserva-

tion and management of wildlife and their habi-

tats. However, preference is only indirectly

observed through measurements of the usage of

space by animals.

Spatial usage (or utilization) is defined as the

proportion of time per unit area spent by an

animal or group of animals in the neighborhood of

a point in space. In most cases, the distribution of

usage by an individual or a population will be
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heterogeneous and this is partly a reflection of the

spatial distribution of the resources required by

the animal(s). This is the motivation for extracting

indexes of habitat preference from data of spatial

usage (Baker and Brooks, 1981; Holbrook and

Schmitt, 1988; Batzli and Lesieutre, 1991; Gorman

and Reynolds, 1993; Lubin et al., 1993; Wright

and Begg, 1997).

The methods employed for this purpose (Buck-

land and Elston, 1993; Arthur et al., 1996;

Augustin et al., 1996; Boyce and McDonald,

1999; Brito et al., 1999) treat spatial usage as a

proxy for habitat preference and, hence, correlate

it directly with environmental variables. The

assumption in this (Manly et al., 1993, p.30) is

that all points in space are freely and equally

accessible to the animal(s), which implies practi-

cally unlimited speed of movement and/or practi-

cally unlimited time for movement. Although this

assumption will be valid for some animals (e.g.

free-ranging grazers*/see case studies in Manly et

al., 1993) it will not be for others (e.g. central-place

foragers). Evidently, restrictions in accessibility

cannot always be treated as a transient phenom-

enon and this has been recognised in recent

theoretical work by other authors (Arthur et al.,

1996; Blackwell, 1997; Hjermann, 2000).

Quite apart from environmental preference,

animals tend to show preference for particular

types of movement. In analyses of individual

movement (Harkness and Maroudas, 1985; Bovet

and Benhamou, 1988; McCulloch and Cain, 1989;

Scharstein, 1990; Benhamou and Bovet, 1992;

Blanché et al., 1996; Claussen et al., 1997; Firle

et al., 1998; Séguinot et al., 1998) these are

typically characterised by the geometrical proper-

ties of the trajectories (two-dimensional paths or

three-dimensional flights) produced by moving

animals. In studies of animals that can be assumed

to track the preferred resources (such as ideal free

foragers) the effect of the way animals move on the

resulting usage distributions is neglected. How-

ever, when accessibility is restricted (for example,

by the need to periodically return to a central

place) preference for a particular type of move-

ment is important and must be modelled in the

same framework as environmental preference.

The first objective of this paper is to develop a
general framework that models the usage of a

point (x ) in space as follows

Usage(x)�f (Accessibility(x); Preference(x)) (1)

where

Preference(x)

�Preference
. . . for environmental attributes of x;
. . . for attributes of paths going through x

� �

(2)

I argue that usage and the determinants of
accessibility are somewhat easier than preference

to measure in the wild and, hence, that the latter

will usually be the unknown in studies of the

spatial distribution of animals. Consequently, the

second objective is to formulate a null model of

usage by assuming no preference and to use it to

control for the contribution of accessibility to the

observed distribution of usage. Effectively, I solve
Eq. (1) for preference

Preference(x)� f ?(Usage(x); Accessibility(x)) (3)

In Section 2, I review the biological facts that

determine the main features of the modelling

framework. In Section 3, I discuss more specific

aspects of its implementation. In Section 4, I
describe a null version of the modelling framework

that assumes no preference. I discuss why the

output of this null model can be used to quantify

accessibility of different points in space. In Section

5, I explore the potential applications of this

methodology using data from a simulated popula-

tion. In Section 6, I present preliminary results

obtained by specifying and parameterising the
framework using data from the British population

of grey seals (Halichoerus grypus ). Finally, in

Section 7, I present a critical review of the

assumptions, practicality and applicability of the

framework.

2. Modelling framework

2.1. Representing the environment

In general, an animal’s environment and its

response to it do not remain constant. At a given
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instant, an animal’s preference for particular
environmental attributes will depend on its current

biological requirements. Ultimately, at any given

time, preference for a particular type of habitat

will be the result of the behavioural activity the

animal is performing.

Furthermore, by interacting with its environ-

ment an animal may change the real or perceived

suitability of a particular location for itself or for
other animals. This could happen if the animal

changed a location’s attributes (by exploiting local

resources or simply occupying space) or if it

explored (and, possibly, communicated informa-

tion about) a previously unvisited location. In this

paper, I focus on animals performing a single

behaviour (e.g. foraging), whose usage of space is

not affected by conspecifics and can be assumed
constant over the time scale of observation (the so-

called ‘pseudo-equilibrium’ assumption*/Guisan

and Zimmermann, 2000).

Since most spatial, resource-usage interactions

in ecology either occur on, or can be readily

projected onto the plane, I focus on animals

moving in two-dimensions. I represent space by a

regular lattice which consists of cells through
which animals can travel and cells that are

obstacles to movement. This implies that, in this

framework, as is often the case in nature, move-

ment takes place within arbitrarily complex geo-

graphical boundaries.

Within these boundaries (i.e. for the domain of

all cells that admit movement) I consider a

function h (x ) which associates a value of prefer-
ence with the centrepoint x of each lattice cell. The

notation h ( �/) is used throughout the paper to

indicate animal preference. The value of the

preference function h(x ) is solely determined by

the response of the animal to the local environ-

mental properties at the cell x . Hence, this

function quantifies environmental heterogeneity

as seen from the animal’s point of view and it is
the desired unknown in studies that relate usage to

habitat type. It is formally defined as the expected

spatial distribution of usage that would occur if

the animals could access any point in space with

equal ease. Equivalently, h(x ) can be defined as

the probability of an animal being at x if it can

choose to be anywhere at anytime.

2.2. Representing animal movement

Observation records of animal movement are

rarely continuous. A typical data set consists of

time-ordered sequences of coordinate pairs sepa-

rated by known time intervals. Particularly in data

obtained in the wild (e.g. by telemetry methods),

where the observer has less control over the rate of

data collection, the time intervals between obser-
vations tend to be long and/or irregular. An

extreme example of this occurs in studies that

observe a single, biologically important, location

in space (such as a nest or a burrow) and only

record the time interval between two consecutive

visits, by the animal, to that location.

Surely, the observer cannot know where the

animal was at any time instant between two
consecutive observations but knowledge of the

animal’s position at the beginning and the end of a

known time interval can inform about where the

animal could have been and this information must

form the basis of any quantitative description of

accessibility.

I collectively refer to this information as a trip .

A trip is defined as the movement, of known
duration t , of an animal from one point x0 in

space to another xT. In open-ended trips only the

point of origin x0 is known. In fixed-endpoint trips ,

the point of termination xT is also known. Return

trips are a particular kind of fixed-endpoint trip

for which x0�/xT. I call all other fixed-endpoint

trips (those for which (x0�/xT) transitory trips.

Existing investigations of spatial usage (Dusenb-
ery, 1989; Johnson et al., 1992; Andreassen et al.,

1993; Gautestad and Mysterud, 1993; Seaman and

Powell, 1996; Smith et al., 1997) have most often

considered open-ended or return trips and, unlike

the work presented here, models (e.g. Don and

Rennolls, 1983) that can estimate usage around

more than one focal point, assume a homogeneous

environment. For the sake of clarity and without
loss of generality, I firstly specify the framework to

a single, fixed-endpoint trip (known endpoints and

duration).

A path is the trajectory of the animal during a

trip of known x0, xT and t . In order to convert

individual movement to spatial usage, continuous

paths can be discretised into lattice coordinates.
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This can be done either by using a fixed time unit
(Dt) and counting the number of path points

contained in each lattice cell or by using a fixed

unit of length (Dt) and allocating a ‘residence

duration’ value to each point in the discretised

path. Both ways can lead to equivalent results but,

in this paper, discretising by length leads to a

simpler algorithm for path generation.

I therefore consider the Dl-discretization of a
path of length l and define the corresponding

lattice path U�/{x0,. . .,xn} as the sequence of

centrepoints of lattice cells visited by the discre-

tised path.

This process suffers from the fact that the

remainder of the division l /Dl will almost never

be zero. So, I define the number of points (n ) in the

lattice path as the integer part of the ratio l /Dl

incremented by two (n�/[l /Dl ]�/2) to account for

the two endpoints. The algorithm of path genera-

tion (described below) takes account of this fact by

treating the length of the discretised path’s final

segment as a variable, equal to Dl(l /Dl�/[l /Dl ]).

In trying to determine where the animal could

have been while it wasn’t being observed it is

equally important to know how the animal moves.
Movement can be described by summarising the

geometrical properties of its observable output, the

lattice path. These summaries can be character-

istics of the entire lattice path (such as overall path

length, overall displacement, sinuosity) or mo-

ments from the observed frequency distributions

of variables (such as step length or turning angles)

measured from smaller segments of it. Such a set
of path summaries specifies a path classification

scheme . For a particular classification scheme

containing k such summaries, let mi be the ith

summary and let m�/{m1,. . ., mi ,. . ., mk) be the

path summary vector making up the entire scheme.

A particular realization of the path summary

vector represents a particular type of path. The

degree of specificity with which this is done
depends on the number of summaries used in the

classification scheme. The most specific classifica-

tion of lattice paths would use k�/n summaries for

every lattice path U , one for each of its points, so

that mi �/xi , (10/i 0/n). Under this scheme, a

particular realization of the path summary vector

would only describe one lattice path and longer

paths would be described by longer summary
vectors. Although this trivial classification fully

retains the information content of a data set of

lattice paths, most of this information would not

be required by a model of spatial usage. At the

other extreme, one could use too few summaries to

be able to capture enough of the features of

individual movement that are important in deter-

mining the spatial distribution of usage.
To formalise this trade-off, let V be the event

space of all the lattice paths that can be realised on

a particular lattice. Let Vm⁄/V be the event space

of those lattice paths described by the path

summary vector m . I refer to all the paths

belonging to the space Vm as being generated by

the same mode of movement. Clearly, a more

specific and larger path summary vector results in
more Vm subdivisions of the space V each with

fewer elements in it. At the extreme of maximum

specificity there are as many sets Vm (i.e. as many

modes of movement) as the number of lattice

paths in V and at the extreme of minimum

specificity, there is a single set Vm (corresponding

to the true but uninteresting statement ‘a path is a

path’).

2.3. The estimation of usage

To introduce this sub-section, I now focus on

the k -dimensional space defined by the different

path summaries of a particular classification

scheme. For each path summary, I consider an

arbitrary but computationally manageable discre-

tization of its range. For example, if the length of a
path is used as one of the summaries and path

length takes values between 0 and 1000 m this can

be discretised in one hundred 10 m bins. This

yields the equivalent of a multi-way contingency

table (see Fig. 1 for an example of such a

contingency table comprising two summaries and

two bins for each summary) the bins of which can

be used to subdivide the event space (V) of all
lattice paths.

I next introduce the remaining types of pre-

ference function required for the estimation of

usage. Let h (Vm) be the probability of occurrence

of any path from the event space Vm so that

aAll mh(Vm)�1: Let h(U jVm) be the probability of
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occurrence of a particular lattice path from the

event space Vm so that aAll U �Vm
h(U ½Vm)�1: The

notation h( �/) is used for these functions to indicate

that they quantify the animal’s preference for a

particular path (U ) within a space Vm or a

particular type of path (Vm) within the space V.

Finally, I introduce the different types of usage

function estimated. Given the duration and end-

points of a trip and the lattice path (U ) generated

by the trip, let s(x ½U ) be the proportion of the

trip’s duration spent at the cell centred at x (so

that if x Q/U , then s (x jU )�/0). Also, let s (x jVm) be

the average proportion of time spent at x as a

result of all paths belonging to the event space Vm.

Finally, let s(x) be the average proportion of time

spent at x as a result of any path or, in other

words, the average usage of the cell at x resulting

from trips of the given duration and with the given

endpoints.

The average usage (s(x ½Vm) of a lattice cell x

resulting from paths of a given type will be

s(x½Vm)�
X

All U �Vm

h(U ½Vm)s(x½U) (4)

The average usage (s (x )) of a cell x resulting
from any path will be

s(x)�
X

All m

h(Vm)s(x½Vm)

�
X

All m

h(Vm)
X

All U �Vm

h(U ½Vm)s(x½U) (5)

3. Implementation of the framework

3.1. Choosing path summaries

Animal movement in two dimensions can be

naturally described in terms of speed and sinuosity

(Bovet and Benhamou, 1988; Marsh and Jones,

1988; Bovet and Benhamou, 1991; Turchin, 1998).

Variables traditionally used to characterise discre-

tised paths are the step length and the turning

angles between successive steps. General models of
movement using these variables that have been

applied to animal movement include Pearson’s

random walk (Hughes, 1995), the biased random

walk (Hill and Häder, 1997), the correlated ran-

dom walk (Bovet and Benhamou, 1988; McCul-

loch and Cain, 1989) and the Lévy walk (Klafter et

al., 1990; Viswanathan et al., 1996, 1999).

The majority of these approaches model move-
ment by describing the probability distribution of

variables at the scale of a single step taken by the

animal or a single time increment of observation,

hence, treating animal movement as a Markov

process. However, modelling movement at larger

scales may lead to more realistic results. This is

because many animals have memory and intention

and are therefore more likely to have an overview
of their movement (past and future) at any one

point of their trip.

If during a trip the animal performs and

completes a certain behavioural function (e.g.

foraging or patrolling a territory) then the result-

ing path may be meaningfully summarised at a

Fig. 1. Paths are the observable, spatio-temporal output of

movement. Different modes of movement can be classified by

the geometrical properties of paths. These path summaries can

be viewed as the dimensions of a space (V). Each point in this

space uniquely defines a mode of movement. In the idealised

example shown here, two summaries are used, path length and

sinuosity. Discretising the ranges of the path summaries (in this

case by two bins per summary) leads to a path classification

scheme. Attaching a probability (the value of a preference

function) to each of the categories in the scheme leads to the

equivalent of a two-way contingency table for paths.
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time scale equal to the trip’s duration. Alterna-
tively, a path may be characterised at multiple time

scales. This is equivalent to incorporating higher

order temporal dependencies in the model of

movement and can easily lead to cumbersome

formulations. To avoid such complications, as-

sumptions of self-similarity can be made, or scale-

independent properties can be sought, in move-

ment data (Wiens et al., 1995). However, the
existence of such properties and their usefulness

for models of movement is still open to debate

(Turchin, 1996).

In this paper, I employ a simple classification

scheme using only two summaries (k�/2), the

path’s total length (l ) and its range (r )*/the

maximum distance achieved by the path from its

endpoint(s). Classification schemes using more
than two summaries are possible, if more compu-

tationally demanding.

The usefulness of total path length as an

informative path characteristic is evident but the

definition of the range and the rationale for using

it as a path summary need to be explained further.

The values that can be taken by r are determined

by the path’s length and the type of trip that
generated the path (Fig. 2). For an open-ended,

unobstructed trip (Fig. 2a), of the type most

amenable to analytical treatment (Hughes, 1995),

the range of the path is identical to its maximum

displacement. Note, that this is not the same as the

final displacement (the distance between the path’s

two endpoints). The range can therefore be used as

a measure of the region in space containing the
path and, for a given path length, the range can

be interpreted as a measure of path sinuosity.

The concept of the range can be similarly

adapted to return (Fig. 2b) and transitory (Fig.

2c) trips.

The existence of obstacles to movement means

that the use of Euclidean distances to measure the

range can be misleading. Instead, biological dis-

tance must be used. This is defined as the

minimum path length required to get from one

point of the lattice to another while avoiding

obstacles. Most geographical information systems

(GIS) have functions that will calculate exact or

approximate biological distances between any two

points within a given lattice.

In conclusion, for a given path length, the range

provides information about how far the animal

has moved away from its origin and termination

points during its trip and, hence, how unfolded the

path is. More information-rich indices, such as the

fractal dimension (Falconer, 1990) or the max-

imum area covered by the path (Firle et al., 1998;

Claussen et al., 1997), can also be used for this

purpose.

3.2. Generation of paths*/exploration of the event

space V

The event space V contains all the lattice paths

that can be realised in a given lattice. The

subdivisions of V, introduced by the path summa-

ries, classify lattice paths according to their

properties (in this classification, total length and

range). The model in Eq. (5) requires the function

h(Vm) which represents the animals’ relative pre-

ference for a particular type of path (generated by

a particular mode of movement) under the classi-

fication scheme. In order to quantify this function

it is first necessary to generate paths of each type

within the lattice.

Most algorithms for path generation use se-

quential (step-by-step) generation and, as a result,

can only control the fine-scale properties (such as

step length and turning angles) of their output,

possibly with some degree of control over the

autocorrelation with previously realised path

points. By using more global summaries for the

present classification scheme and, also, by requir-

ing that fixed-endpoint paths must be generated on

demand, sequential generation of points in a path

becomes impractical. So, for example, using a

random walk approach to sample the event space

of paths resulting from a return trip from and to a

central place would lead to enormous wastage as

very few paths of the required length would return

to the point of origin after exactly n steps. Instead,

I introduce an algorithm that generates paths that

are specified in terms of length and endpoints but

are otherwise unspecified. This algorithm, explores

the event space V randomly but not uniformly (see
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below) and then groups the resulting paths accord-

ing to the classification scheme at hand.

Algorithm 1 (Path generation). (i) Initialization:

Initialise the algorithm with the trip’s endpoints

(x0, xT) and duration (t).

(ii) Path length: Take the next value of l from

the discretised domain of possible path lengths.

(iii) Overall feasibility: Examine if the trip can

be performed with a path of length l . This

involves, firstly checking if the biological distance

between the trip’s endpoints is at most as large as l

and, secondly, if the maximum speed of the animal

(see next section) enables it to cover a length l in

the available time t . If the trip is not feasible then

go to step (ii).

(iv) Path discretization: Use the length unit Dl to

discretise the path length l . This gives a total of n

points. The endpoints are specified as parameters

in step (i). The intermediate points have not yet

been placed in the lattice. The length of the path

segments generated in this way is Dl except for the

length between the n�/1th point and xT which is

equal to Dl(l /Dl�/[l /Dl ]).

(v) Next point to be placed: From the set of

points that have yet to be placed in the lattice,

select one at random.

(vi) Find the feasible region for this point: Let l ?
be the length of the path segment between the

currently selected point and the immediately pre-

ceding point that has already been placed in the

lattice (say, at x ?). Similarly, let lƒ be the length of

the path segment between the current point and

the first point after it that has already been placed

in the lattice (say, at xƒ). The values of l ? and lƒ are

fixed and, in most cases, integer multiples of

Dl . The value of lƒ will be a non-integer multiple

of Dl only if xƒ�/xT . The feasible region for the

current point is the intersection of the two discs

(x ?, l ?) and (xƒ, lƒ). It therefore consists of all

points x that satisfy the inequalities kx?�xk0l?
and kxƒ�xk0lƒ: Conceptually, the, as yet un-

Fig. 2. The range (r ) of a path is defined as the maximum distance reached during a trip from the trip’s endpoint(s). In environments

that contain obstacles to movement, biological distance must be used to measure the range. This is simply the smallest path length

(l(x1, x2)) required to get from one point (x1) in space to another (x2) while circumnavigating obstacles. The maximum attainable value

of the range depends on the type of trip that generated the path. In open-ended trips (a) the animal can unfold its path completely so

that the maximum attainable value of the range is equal to the path’s length (l ). In return trips (b), the range cannot exceed half the

path’s length. In transitory trips (c), the path’s length must be greater than the biological distance (l(x0, xT)) between the trip’s

endpoints. In this case, the range is defined r�/max{l(x0, x )�/l(x0, xT), �/x �/U } and its value cannot exceed the path’s total length.
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placed, point x is tied to two pieces of string of
length l ? and lƒ which are anchored at the points x ?
and xƒ. The region within which the point can be

placed will be determined by these constraints and

its boundaries can be calculated in general using

simple geometrical arguments (Appendix A).

(vii) Placement of point: Select a set of coordi-

nates uniformly randomly from the feasible region.

Position the current point at those coordinates.
(viii) Recalculate combinatorial weight for this

path. This algorithm is computationally expedient

but step (vii) means that not all paths of a given

type (i.e. paths belonging to an event space Vm)

have the same probability of being generated. A

correcting weight is therefore derived in Appendix

B.

(ix) Repeat steps (v)�/(vii): Continue until all n

points have been placed.

(x) Obtain lattice path: Convert path coordi-

nates to the centrepoints of the corresponding

lattice cells.

This procedure shares common elements with

the midpoint displacement method (Mandelbrot,

1982). An example of a path generated using this

algorithm is shown in Fig. 3. This algorithm allows
the positioning of points in a path in any order,

rather than sequentially. In this case, the endpoints

are placed first and the intermediate points are

placed in random order after them.

Note, however, that there is a computational

price to be paid in terms of the number of

iterations of the whole algorithm required to

explore the event space V. For combinatorial
reasons, some types of paths are easier to generate

than others. An example is shown in Fig. 4. Using

the summaries of length and range, we see that, for

a given path length, extreme values of the range

are less likely to occur by chance. Therefore, the

types of paths that are more difficult to generate

with this algorithm will determine the sampling

intensity required to adequately explore the event
space V. This problem will become more severe

when modes of movement are specified in detail,

but, as I argued above, a few path summaries will

usually be sufficient for the estimation of usage.

It must also be stressed that this is only a

computational problem. This algorithm is used to

generate the relative usage of different lattice cells

resulting from the same type of path. The
frequencies with which different types of paths

are generated by this algorithm are ignored in the

estimation of usage. This is because the preference

associated with a given mode of movement should

be determined by the animals’ behaviour and not

by combinatorics.

3.3. Time allocation along a lattice path

Having discretised a path by length, it is then

necessary to allocate a time of residence to each

point in the resulting lattice path. In this subsec-

tion, I describe my approach to this problem.

If the animal moves at a constant speed, so that

equal length increments along the path correspond

to equal time intervals of movement, then the

proportion of time spent in a cell will be s(x jU )�/

nx /n , where nx is the number of points of the

lattice path (U ) that are in the cell x . Once again, a

suitable correction needs to be made to take

account of the fact that the last segment of the

path will not be exactly equal to Dl .

However, for a particular lattice path (U ), it is

more reasonable to expect that the animal would

regulate its speed so that it spends more time in
cells of higher preference. The simplest way to

incorporate this is to assume that the time spent in

each of the cells visited by the path is proportional

to the value of the preference function (h (x )) for

that cell. However, this neglects the fact that

animals are limited by their maximum speed (For

example, an animal could not travel infinitely

quickly through a cell of zero preference).
Let tmin(l ) denote the minimum time required by

the animal to perform a path segment of length

l�/vDl (v�/1,. . ., n ). Covering this fixed length in

the minimum possible time tmin(vDl) implies that

the animal is moving at its maximum average

speed. In this and subsequent uses of the term

‘maximum average speed’, ‘maximum’ refers to the

restrictions imposed on speed by the animal’s
physiology and ‘average’ refers to the fact that

the value of speed is not instantaneous but

measured over the entire path segment l .

Note, that maximum average speed and segment

length may not be linearly related. For example,

animals may be able to cover small lengths in
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bursts of high speed but they may not be able to

maintain such speed for longer path lengths. An

empirical function or a behaviourally/physiologi-

cally realistic model for tmin(vDl) is therefore

required (see Appendix C for an example of such

a model).

The allocation of time over the elements of U

can be done using the following algorithm:

Algorithm 2 (Time allocation along a lattice

path). (i) Initialization: Generate an initial

residence duration distribution along the lattice
path such that s(x jU )8/h (x) and

aAll x�U s(x½U)�1:/
(ii) Feasibility test: If the minimum time

tmin(vDl) required to perform the entire path is

more than the trip’s duration t then declare the

path unfeasible and exit.

(iii) Loop for length scale: Examine next length

scale v (v�/1,. . ., n ).

(iv) Minimum time for that scale: Calculate the

minimum time (tmin(vDl)) required to perform a

path at the current length scale v .

(v) Loop for path segment at current length

scale: Examine next segment {xi ,. . ., xi�v} at the

scale v in the lattice path.

(vi) Modification of residence time: The total

time allocated to that segment by the current

residence duration distribution is ti�
tai�n

j�i s(xj ½U): If ti B/tmin(vDl), then increment the

existing residence times at the points of the current

segment in proportion to the preference for the

lattice cells involved and so that the total time

increment for the segment brings it up to tmin(vDl),

the minimum time required to perform the seg-

ment.

Fig. 3. An example of a path generated using Algorithm 1. The algorithm is initialised with the path’s length and the positions of the

trip’s endpoints. It then fixes the remaining points along the path in random order.
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(vii) Repeat steps (v)�/(vi) until all segments

have been examined.

(viii) Renormalise the entire residence duration

distribution so that, once again, aAllx �U s(x½U)�1:/
(ix) Repeat steps (v)�/(vii) until no further

corrections are necessary.

(x) Repeat steps (iii)�/(ix) until all length scales

have been examined.

Sample output of this algorithm for a given

environment and a given lattice path is given in

Fig. 5.

When not limited by the animal’s maximum

speed, the algorithm allocates time in proportion

to preference (steps (i) and (vi)). This assumes that

the animal has, in the past, explored and accu-

rately perceived the profitability of all the points

Fig. 4. For combinatorial reasons, under Algorithm 1, some types of paths are easier to generate than others. I used Algorithm 1 to

generate 1000 paths of the same length (50 points each) and classified them according to the simple scheme of this paper (employing

path length and range). It is clear from this example that extreme values of the ratio 2r /l occur less frequently. This implies that the

event spaces to which these paths belong will be less intensively explored by the algorithm.
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visited by the lattice path U . Although in this

paper, I use (and validate under conservative

conditions) this assumption, steps (i) and (vi) of

the algorithm can be modified (e.g. by using error

terms in the perception of the preference function)

to enable it more accurately to represent the effect

of deficient knowledge and imperfect memory.

Finally, the algorithm needs to be corrected for

the fact that animals cannot travel over obstacles.

Those lattice paths generated by Algorithm 1 that

go over an obstacle are deemed unfeasible for a

given lattice and must therefore be excluded from

the corresponding event space Vm.

Conceptually, this does not require an

‘If. . . then. . .’ test in addition to that of step (ii)

of Algorithm 2 since, the time required for

an animal to travel over an obstacle is infinite

and so is the minimum time required to per-

form the path, whatever the path’s duration.

Instead of the binary treatment of maximum

average speed used in this paper, one could

envisage more complicated models of time alloca-

tion in which the animal moves at a variable speed

not because it chooses to but because its maximum

average speed is affected by the medium it moves

through or the habitat it moves over. If the way in

which maximum speed is affected by the environ-

ment of movement is known, then this information

can readily be incorporated in the above algo-

rithm.

Fig. 5. Sample output of the path generation and time allocation algorithms (Algorithm 1 and Algorithm 2 respectively). The lattice

path (b) is generated independently of the preference function (a). The algorithm is initialised with a time allocation trace (c) that is

directly proportional to the preference values of the cells that the lattice path goes over. Restrictions in maximum average speed at all

scales of length are then considered and the final time allocation trace (d) is arrived at. This determines the usage (s (x ju ) of lattice

points along a path.
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3.4. Preference for a particular lattice path of

known characteristics (h(U ½Vm))

As discussed in the previous subsection, along a

given path, an animal might be expected to spend

more time in cells of high preference. It is also

plausible to assume that, in choosing between

paths of a given type, the animal will be more

likely to perform paths that, overall, allow it to
spend more time in locations of high preference. If

the animal spent an equal proportion of its trip’s

duration at every cell in the lattice path then the

overall preference for a particular path could be

expressed as the average of the preference values

h (x ) of the cells visited by the path. However,

since residence time will not, in general, be the

same for all cells, overall preference for a path can
be expressed as the average of the preferences

(h(x )) of the individual cells visited along the path,

weighted by the proportion of time the animal

spends there

h(U ½Vm)�K
X

All x �U

h(x)s(x½U) (6)

Preference for paths of a given type must satisfy

the condition aAll U �Vm
h(U ½Vm)�1: The constant

of proportionality in Eq. (6) is therefore the result
of normalization,

K�
� X

All U �Vm

X
All x�U

h(x)s(x½U)

��1

(7)

3.5. Preference for a mode of movement (h(Vm))

The animal’s preference (h (Vm)) for a particular

mode of movement will depend on external and

internal factors (e.g. Scharstein, 1990). The con-

tribution (hE(Vm)) of external factors to the func-

tion h (Vm) depends on the underlying preference

function h(x ) for environmental attributes and is
therefore dependent on the positioning and orien-

tation of the path within the environment. The

contribution hI(Vm) of internal factors (such as

physiological constraints on speed, or an inherent

tendency to maintain the same direction while

moving) will be shift- and rotation-invariant. As a

first approach to the problem, I assume a multi-
plicative relationship between the contribution of

internal and external factors,

h(Vm)8hI(Vm)hE(Vm) (8)

This formulation gives equal importance to

internal and external preference. This is not a

strict assumption. Admittedly, some animals’

movement may be uninfluenced by their environ-

ment so that one may be tempted to weight hI(Vm)

and hE(Vm) differentially. However, this situation
is, in fact, the result of a uniform preference

function h (x )�/const. Also, a multiplicative rela-

tion such as Eq. (8) behaves like a logical ‘OR’

operator. This is a desirable property because it

ensures that, if a particular mode of movement

does not occur, it is either because the animals do

not inherently tend to use it or because it is not

encouraged by the distribution of resources in the
environment. The biological interpretation and

implications of Eq. (8) are examined further in

the paper’s discussion. Here, I discuss how the

components of Eq. (8) can be specified.

Preference for a mode of movement due to

external factors hE(Vm) can be derived as a

weighted average of the preference for the cells

visited by paths generated by this mode of move-
ment,

hE(Vm)�
X
All x

h(x)s(x½Vm) (9)

Internal preference for a mode of movement

hI(Vm) can be expressed as an empirical function of

path summaries and their higher-order interac-

tions. Given the rather small number of biological

studies carried out on inherent patterns of animal

movement it is not clear what form that function

should take. In the examples presented below I

tentatively use a log-linear model with four para-
meters,

hI(Vm)�exp(b0�b1l�b2r�b3lr) (10)

The expression in Eq. (10) carries no biological

or statistical significance. It is not based on any

biological principle and its similarity with a

generalised linear model (GLM) is only superficial.

It is just one of many possible formulations that

give positive values which can then be re-normal-
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ised to satisfy the condition a� mhI(Vm)�1: In Eq.
(10) this is done by setting

b0��lnða� mexp(b1l�b2r�b3lr)Þ:/

3.6. Modelling usage

Prior to estimating usage it is necessary to create

the data structures that will receive the results

from Algorithm 1 and Algorithm 2 (path genera-

tion and time allocation). These are (1) an array
identical in structure to the spatial lattice and, (2)

for each cell (x) in the spatial lattice, a correspond-

ing array identical in structure to the contingency

table of path types. The first of these will

eventually store the predicted, total usage of each

location in space and the second will store the

relative contribution, by each mode of movement,

to the predicted usage of each lattice cell.
The second of these data structures enables the

program to track usage in a cell x resulting from

each mode of movement. It is also the main

determinant of the program’s memory require-

ments. For example, in a path classification

scheme consisting of k summaries where the

domain of the i th summary has been discretised

into zi intervals (bins) the contingency table will
consist of a total of Pi�1

k zi distinct classes (each

corresponding to a distinct mode of movement). In

a relatively small, 50�/50 lattice, using only two

path summaries, each discretised into 10 bins, the

storage requirement is for 2.5�/105 high-precision

numbers.

Overall, this framework is characterised by a

trade-off between the size and resolution of the
spatial lattice and the specificity (number of

summaries) and resolution (number of bins per

summary) used to describe the geometry of paths.

To generate a usage distribution resulting from

trips with known endpoints and of known dura-

tion, the following procedure is applied:

Algorithm 3 (Modelling usage). (i) Generate
lattice path U (using Algorithm 1).

(ii) Allocate residence time to each of the points

of U (using Algorithm 2).

(iii) Estimate the preference h(U ½Vm) for the

path relative to other paths resulting from the

same mode of movement (Using Eq. (6)), normal-

ization of these values of preference and hence the

calculation of K under Eq. (7) can be left until

after step (v)).

(iv) Estimate the additional usage of each cell x

visited by the lattice path U from the occurrence of

this path. Increment existing usage s (x ½Vm) at each

cell accordingly.

(v) Repeat steps (i)�/(iv) until the path summary

space has been adequately explored.

(vi) Estimate preference hE(Vm)for a mode of

movement due to external factors (Using Eq. (9)).

(vii) Combine it with the model (e.g. Eq. (10)) of

preference hI(Vm) for modes of movement due to

internal factors to produce the preference function

h(Vm).

(viii) Finally, use Eq. (5) to generate the usage

distribution.

4. A null model of usage

The modelling framework described in Sections

2 and 3 estimates usage at a point in space as a
function of accessibility and preference. In most

biological systems, data relating to accessibility

(speed of movement, trip durations, trip endpoints

and obstacles to movement) are more easily

obtainable, through direct and, often localised

observation, than information pertaining to pre-

ference. In this section, I specify a null version of

the general framework that is as informed as it can
possibly be on matters of accessibility and as naı̈ve

as it often has to be on matters of preference.

Hence, the null model incorporates information

about the animals’ speed and the duration and

endpoints of their trips, but assumes that animals

show no preference either to specific locations in

space or particular modes of movement.

In general, such a partly specified model serves
two purposes. Firstly, it synthesises all the readily

obtainable data into a spatial description of

accessibility and, secondly, it formalises the in-

vestigator’s ignorance on matters of preference. As

I will discuss in Section 5, below, the null model

described here is the start of a line of enquiry that

aims to provide insights about animal preference.
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4.1. Quantifying the determinants of accessibility

Advances in remote sensing and GIS have

greatly increased the ease with which data on

geomorphology and habitat features are collected

and processed. In addition, the investigator is

often aware of the type of environmental feature

that obstructs the movement of the animal being

studied (for example, land for marine, and water

for terrestrial organisms). It is therefore likely that

the investigator will be able to include information

about obstacles. It must be noted that this is not a

necessary input to the model. If this information is

not available or if the investigator is not certain

about what constitutes an obstacle the model can

still generate results.

It can also be assumed that at least one of the

trip’s endpoints and the trip’s duration are known.

For most of this paper, for reasons of presenta-

tional clarity, I have assumed that knowledge of

the trip’s duration is exact. However, the frame-

work can easily be extended to the case when the

duration of a trip is known in distribution (see

application to grey seals in Section 5, below).

The one remaining unknown influencing acces-

sibility is the animal’s maximum average speed of

movement used in the time allocation algorithm

(Algorithm 2). If high-resolution, long-term, in-

dividual movement data exist, then one can

tabulate maximum average speed as a function

of path length. However, such data may not be

available. It will then be necessary to extrapolate

from fine-scale/short-term data by using a physio-

logically/behaviourally realistic model.

Fine-scale/short-term movement data can be

obtained using methods such as radio tracking

(White and Garrott, 1990) or video tracking (Bell,

1991; Häder, 1990). Although these data may not

be sufficient to provide a comprehensive under-

standing of the animals’ large-scale movement
behaviour, they can, nevertheless, be used to

obtain extrapolated estimates of their maximum

average speed at greater time scales than those

observed (see example of such a model in Appen-

dix C).

4.2. Modelling the lack of preference

Assuming that animals show no preference for

environmental characteristics implies that the
function h (x) has a constant, non-zero value h in

all lattice cells that are not obstacles to movement.

Preference for modes of movement due to envir-

onmental characteristics (hE(Vm)) can then be

derived from Eq. (9) as

hE(Vm)�haAll xs(x½Vm)�h:/
Similarly, in the null model, internal preference

for different modes of movement should be uni-
form. For example, in the case of the model in Eq.

(10) parameter values should be set to b1�/b2�/

b3�/0.

5. Applications to simulated data

In this section, I outline three, potentially

important, applications of this framework in
research dealing with habitat selection and usage

estimation. There is extensive literature on the

investigation of habitat selection (reviewed by

Manly et al., 1993). The aim of this paper is

simply to extend the applicability of the existing

statistical methodology to animals whose usage of

space is influenced by accessibility restrictions.

Therefore, rather than present a detailed statistical
analysis of the simulated data, I restrict attention

to how the framework fulfils its objective.

Fig. 6. Simulation setup for applications I and II. Obstacles (shown in black) were placed on a 50�/50 lattice (a) and a resource

distribution was added to the remaining cells (b). The biological distances (l (x0, x )) of all cells from the point of origin (indicated by

the arrow) were estimated (c) and 10 000 paths were simulated to generate the ‘observed’ usage distribution (d) which is partly

determined by the underlying resource distribution (b). However, because accessibility restrictions also influence the observed usage

distribution, the direct correlation between the usage and resource distributions was rather weak. Accessibility restrictions were

accounted for by running the null model (incorporating no preference for environmental attributes or modes of movement) and using

its output (e) to control for the effects of accessibility on usage. The ratio (f) of observed over null usage was a clearer indicator of

preference for environmental attributes (compare (b) with (d) and (b) with (f)).
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5.1. Application I: investigating preference for

environmental attributes

I first examine the common scenario in which

the investigator has knowledge of the spatial

distribution of environmental attributes (e.g.

food or other resources) and of the usage distribu-

tion of the animal(s), but lacks knowledge of how

the two are connected. The aim is to investigate

preference for environmental attributes.

In order to generate a data set on which to test

the model framework, I constructed an individual-

based simulation of animals performing return-

trips of fixed duration from a fixed origin, within a

synthetic environment. The environment was a

50�/50 lattice consisting of cells that either

allowed or obstructed movement (Fig. 6a). Using

an algorithm similar to that described in Wien-

gand et al., (1999), I then generated fictitious

preference values h (x) for those cells that the

simulated animals could move over (Fig. 6b). To

allow correct categorization of paths according to

their range (r ), I produced a map of biological

distances with reference to the point of the trips’

origin (Fig. 6c). In this lattice, I simulated a total

of 10 000 return trips to obtain the ‘observed’

usage distribution s(x) (Fig. 6d).

Simple movement rules were used. An indivi-

dual remained at its position or moved to any of

the eight neighboring lattice cells with probability

proportional to the preference values of these cells.

The simulated animals were therefore random

walkers on a square grid, whose movement was

biased only by the local gradient of habitat quality,

one of the simplest set of rules that incorporates a

response of the simulated animals to their envir-

onment (Okubo, 1980). In a homogeneous envir-

onment, the distribution of usage resulting from

these simulations would be given by time-inte-

grated, simple diffusion. In a heterogeneous en-

vironment, the simulated animals were captured

by local maxima of the function h(x ) close to their

starting point. Importantly, this property of the

individual-based simulation makes it a conserva-

tive platform on which to validate the proposed

modelling framework (see discussion in Section 7).

I then parameterised and ran the null model

described in Section 4, for this test system, hence

generating a null usage distribution s ?(x ) (Fig. 6e).

To graphically illustrate how the output of the null

model can control for the effects of accessibility on

usage, I divided the value of each cell of the

observed usage distribution by that of the corre-

sponding cell of the null usage distribution. This

resulted in a new distribution (Fig. 6f) that was

found to be a better predictor of preference

(Spearman rank correlation between ratio s (x )/

s ?(x ) and h(x )�/0.482) than either one of its

components (Spearman rank correlation between

Fig. 7. Investigating preference for modes of movement. Using a known preference function and the null version of the internal

preference (b1�/b2�/b3�/0) leads to a usage distribution (a) that can then be modified by finding the parameter values b0, b1, b2 and

b3 that result in a distribution (b) which deviates minimally from the observed usage distribution (c).
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Fig. 8. The values of the parameters b0, b1, b2 and b3 that have been obtained by fitting the model to the observed usage distribution

can be treated as a characteristic of the animals and not of their environment. Hence, removing all environmental features (no obstacles

and a uniform resource distribution) and re-running, firstly, the individual-based simulation and, secondly, the model results in similar

usage distributions (a) and (b). Further to illustrate that the values of the parameters defining internal preference do not depend on

environmental features, the goodness of fit resulting from all parameter combinations was explored over the parameter space of b1, b2

and b3 (b0 is just a rescaling constant). The 3D density plots in (c) and (d) show the goodness of fit of different parameter combinations

for the cases of the heterogeneous and homogeneous environments, respectively.
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s (x ) and h(x )�/0.274, Spearman rank correlation

between s ?(x ) and h (x)�/�/0.146).

The implication of this is that, in cases where
accessibility influences the usage distribution, it is

potentially advantageous to obtain a standardised

index of usage by employing a null model such as

the one presented here. During the exploratory

stage of data analysis, this index will enhance the

investigator’s ability to identify environmental

variables that could be covariates of preference.

In a formal analysis of habitat selection (e.g.
Rosenberg and McKelvey, 1999) one would take

advantage of the information on relative accessi-

bility (as quantified by the output of the null

model) by using it directly, as one of the explana-

tory variables in a multivariate statistical model.

This approach has the advantage of actually

quantifying the power of the null model’s output

in explaining the observed usage distribution.
Under certain conditions (see Bishop et al.,

1975), the accessibility dimension of the resulting

empirical model could then be collapsed to yield a

standardised estimate for environmental prefer-

ence in a freely accessible environment.

5.2. Application II: investigating internal

preference for different modes of movement

As mentioned above, it is advisable to quantify

the explanatory power of the null model’s estimate

of accessibility by using it as yet another explana-

tory variable in a statistical model of environmen-

tal preference. There is good cause for allowing

this flexibility. The null model assumes that, in a

homogeneous environment, animals have no in-

herent preference for one mode of movement over

another. In the examples of this section this is

represented by setting b1�/b2�/b3 in Eq. (10).

The resulting estimate of accessibility is therefore a

composite of all modes of movement equally

weighted. Although, this is a good initial assump-

tion, it may reduce the null model’s ability

correctly to quantify accessibility. At some stage,

it is necessary to fine-tune the parameters of the

internal preference function hI(Vm). This could

follow the investigation for external preference (as

is done here) or precede it although, ideally, the

two should be investigated simultaneously, or,

even, iteratively.

For this application, I assume that, following a

formal analysis of preference, the investigator has

an estimate of the animals’ preference for environ-

mental attributes, of the spatial distribution of

these environmental attributes, and, also, of the

animals’ usage of space. The first two of these

three types of information can be used to derive a

spatial preference function h (x ) The third is used

as the truth to which the model is fitted.

At a first stage, I ran the model, this time using

the known preference function h (x) and parameter

Fig. 9. For a new resource distribution (a) new usage distribution (b) is obtained. If preference is truly invariant under such changes,

then we can use previously extracted information on preference to predict what this new usage distribution will look like (c).
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values b1 �/b2 �/b3 �/ 0 for the internal preference

function. With the introduction of a non-uniform

preference function for environmental attributes,

the time allocation algorithm (Algorithm 2) and

the maximum average speed model (Appendix C)

must also come into play. For the function tmin(l) I

used the formulation and parameter values derived

in the example of Appendix C. The initial out-

put of the model (Fig. 7a) was then improved by

fitting the parameters b0, b1, b2 and b3 to the

observed usage. This was done by minimising the

sum of squared deviations of the model’s spatial

output from the observed usage distribution

(Fig. 7c).

This recursive procedure is facilitated by the

data structures used by the model which store the

relative contribution of each mode of movement to

the usage of each lattice cell. Hence, a change in

the parameters b0, b1, b2 and b3 is equivalent to a

simple reweighting of known information and it is

therefore not necessary to generate new paths

every time a new set of values for the parameters

is examined.

The best-fitting parameters were b1�/2.67, b2�/

3.90 and b3�/�/0.34 the negative sign of the

interaction coefficient b3 suggesting a trade-off

between longer paths and wider ranges. Despite

their similarities, the distribution predicted by the

model (Fig. 7b) was less heterogeneous than the

true usage distribution (Fig. 7c).
To illustrate the independence of internal pre-

ference from the environment in which movement

takes place, I ran both the individual-based

simulation and the model in a homogeneous lattice

(no obstacles, uniform preference function). For

the model of internal preference, I used the

previously obtained values b1�/2.67, b2�/3.90

and b3�/�/0.34 to generate a prediction of usage

in this featureless environment. The resulting

distributions of usage (Fig. 8a and b, respectively)

were comparable in their spread.

Yet, it is possible that more than one combina-

tion of values for the parameters b1, b2 and b3 can

result in a good fit between the predicted and

observed usage distributions. Also, simply looking

at how well a single set of parameter values,

obtained from one usage distribution, manages

to emulate another usage distribution is a rather

weak indicator of the independence of internal

preference from environmental conditions. Conse-

quently, I performed an exhaustive exploration of

how the quality of fit varies over the parameter

space of b1, b2 and b3 in the two (heterogeneous

and homogeneous) test environments. Once again,

the overall aim was to see which parameter values

for b1, b2 and b3 would have been suggested as

plausible by the present approach under funda-

mentally different environmental conditions. The

results (Fig. 8c and d) illustrate that there is,

indeed, considerable similarity between the two

cases.

5.3. Application III: predicting usage

Of the three applications presented here, this is

the one with the highest degree of risk. The aim

was to predict the distribution of usage in a new

environment using information on the study

species, previously extracted from other sites.

The best way of extrapolating to new environ-

ments on the basis of information collected either

elsewhere or at another point in time is still being

debated in the literature (Arthur et al., 1996; Boyce

and McDonald, 1999; Mysterud and Ims, 1999

and reply by Boyce and McDonald, 1999). In-

corporating a continuous measure of accessibility

to an analysis of habitat preference (see Applica-

tion I, above) should lead to increased robustness

in the results but will not take account of other

factors such as complex behavioural constraints

and interactions between resource requirements.

Therefore, this section is purely illustrative and of

limited value to the debate of how best to deal with

preference when habitat availability changes.

I assumed that the investigator has knowledge

of the preference functions h(x ) and hi (Vm), and

of the distribution of environmental attributes, but

no knowledge of usage. In a lattice of the same

dimensions as before, I generated a new resource

distribution (Fig. 9a) and, on it, I simulated a set

of 10 000 paths to obtain a new usage distribution

(s (x )*/Fig. 9b) which I kept hidden from the

model. I then parameterised the model with the
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Fig. 10. This qualitative analysis of grey seal habitat usage focuses on a subset of the British population, off the east coast of Britain.

Return-trip durations and the coordinates and observed population sizes of three haulouts (indicated by arrows) were used in

conjunction with fine-scale data on maximum speed to compile a null distribution of usage (b). This map quantifies the relative

accessibility of different points at sea from the three haulouts. Locations from a sample of 30 individuals tagged with SRDL’s were

used to generate a map of observed spatial usage (c). Taking the ratio the corresponding cells of these two maps (observed usage/

accessibility) yields a standardised map (d) in which the hotspots of usage are more clearly visible. During the exploratory stages of

data analysis this makes it easier to determine which environmental attributes are promising candidates as covariates of preference.
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known preference functions h(x ) and hI(Vm), and
generated a prediction for s(x ) (Fig. 9c). The

spatial features of the true usage distribution were

predicted by the model but the prediction was

more spread-out around the central place and

more homogeneous than the truth.

6. Application to British grey seal data

As a partial application of the methodology

developed in this paper, I present preliminary

results from an analysis, currently underway, of
the habitat preference of the British grey seal.

6.1. Biology of study species

Grey seals (Halichoerus grypus ) are an impor-

tant predator of the marine ecosystems around the

British coasts, particularly the North Sea. The size

of this population (currently estimated to be in the

region of 120 000) comprises a large proportion of

the species’ worldwide distribution and though the

species as a whole is not considered endangered,

conservation of the British population is seen as
important.

On the other hand, fish consumption by grey

seals (estimated by Hammond et al., 1994 at :/

78 000 tonnes) is anecdotally presented as one of

the reasons for the decline of commercially im-

portant fish stocks. Knowledge of the spatial

distribution and habitat preference of grey seals

is therefore of particular importance in the design
of policy that satisfies the requirements of fishery

management and grey seal conservation.

Outside the breeding season, grey seals appor-

tion their time between the terrestrial and marine

environments. Satellite observation of tagged seals

(McConnell et al., 1999*/see below) indicates

that, on average, an individual spends 43% of its

time aggregating with other grey seals close to or
at sites on shore (haulouts). During the remainder

of its time, it performs foraging trips to sea. Most

of those trips (�/86%) are return trips to the same

haulout site.

The position of haulouts and the relative

abundance of seals at these sites are monitored

by aerial surveys performed regularly by the Sea
Mammal Research Unit (SMRU). Data on the

large-scale movement of individual seals during

their trips at sea have been collected over the last

10 years with the aid of Argos Satellite Relay Data

Loggers (SRDLs), developed by SMRU and

described in detail elsewhere (McConnell et al.,

1992; Fedak et al., 1996). These data sets are

typically long-term (average duration of observa-
tion 104.3 days), of low frequency (average

number of locations per day 6.46) and provide

information about the distribution of seals at sea

and the duration of their trips.

Short-term (typical duration of observation 24

h) and fine-scale (typical interval between observa-

tions 10 min) data on movement have also been

collected by following a small (n�/8) number of
acoustically-tagged individuals (Thompson and

Fedak, 1993). These data (McConnell et al.,

1999) provide fine-scale information about the

animals’ speed of movement.

6.2. Extending the framework

To extend the framework for application to a

population of animals making trips of variable

duration within a network of central places, let T

be a random variable with probability density
function gij (t ) representing the duration of a trip

between the i th and j th central place in the

network. The distribution of usage resulting

from a trip of duration T�/t can be obtained

from Eq. (4).

sij(x½t)�
X

All m

h(Vm)
X

All U �Vm

h(U ½Vm)sij(x½U) (11)

To generate predictions of usage resulting from
trips of variable duration under an arbitrary

discretization of the domain of the variable T ,

Eq. (11) must be modified as follows

sij(x)�
X
All t

gij(t)
X

All m

h(Vm)

�
X

All U �Vm

h(U ½Vm)sij(x½U) (12)
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6.3. Application of the framework and results

I examined the usage of space by seals perform-

ing return trips from three haulout sites on the east

coast of Britain (Fig. 10a). I parameterised the null

model using the coordinates of the three haulouts,

and data on the durations of trips and the shore-

line. The fine-scale speed data were used to

parameterise the model of maximum average

speed developed in Appendix C giving the values

m�/23.97 m/min, s�/16 m/min and h�/3.4.
Firstly, I generated a map of null usage for each

of the three haulouts separately and then com-

bined these into a single map (Fig. 10b) by

weighting them according to the relative abun-

dance of animals at each site.

I then generated a map of true usage for each

haulout as follows. Each observation in the SRDL

data-set was allocated to a trip. Each trip was

associated with a haulout. This gave three, haul-

out-specific data-sets of SRDL observations. Each

of these was used to generate a map of observed

usage. This was obtained from the SRDL data by

kernel-smoothing and using least-squares cross-

validation (Silverman, 1986) to select the smooth-

ing coefficient. The three resulting maps were then

weighted by the relative abundance of animals at

the haulouts and combined into a single map of

observed usage (Fig. 10c).
Finally, as with the simulated data, I generated a

map of usage standardised by accessibility by

dividing observed by null usage. This led to a

clearer representation (Fig. 10d) of the hotspots of

usage by grey seals in the geographical region

examined.

It must be noted that this is just a graphical

demonstration of the usefulness of the maps of

accessibility in highlighting spatial preference.

Accessibility is currently being used as an expla-

natory variable in conjunction with other informa-

tion such as sea depth, sediment type and prey

density as part of a GLM of habitat preference for

these grey seals. The final model (to be published

separately) can explain a high percentage of

observed variability in usage and accessibility

is, consistently, retained as a highly significant

term.

7. Discussion

7.1. Overview

The aim of this work, to provide a tool for

analysing the spatial distribution of animals whose

movement is restricted by temporal and spatial

constraints, is reflected in the framework’s struc-

ture. Preference functions h ( �/) are used to repre-
sent what the animals would do if their movement

were not restricted. By defining preference with

respect to points in space (h (x )), points within a

given path (h(x ½U )), whole paths of a given type

(h (U ½Vm)), or groups of paths under a given

classification (h (Vm)), the framework simulta-

neously deals in stages with the dimensionality of

animal movement and breaks down a complicated
process into biologically meaningful constituent

parts. Preference functions are then corrected for

the effect of accessibility to generate usage func-

tions (s(x j �/)). Usage can be estimated for parts of

paths, whole paths, or groups of paths, but always

refers to a point in space (a cell in the lattice).

The effect of accessibility restrictions on the

observed usage distribution is modelled using first
principles. This is possible because, by definition,

accessibility is restricted by a small number of

factors (speed, obstacles, trip duration and end-

points) that, unlike preference, are observable and,

in principle, measurable in the wild.

7.2. Data requirements

The behavioural data required for parameter-

ization of the model are minimal. This is primarily

due to the model’s Eulerian nature (Turchin, 1996)

and to the fact that it can be used repeatedly to

generate its own parameters. However, at the

initial stages, the model depends on detailed usage

data and, at every stage, the quality of its

predictions relies on the available data on the
spatial distribution of environmental variables.

7.3. Review of the framework’s assumptions and

simulation results

Although most of the assumptions used in this

paper were selected to increase generality, two
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assumptions were selected with a view to simpli-
city. Specifically, (i) preference for points within a

path, paths within a group of paths, or groups of

paths within the event space V was derived as a

weighted average of the preferences of the ele-

ments of the set in question (the path, the group of

paths and the event space V, respectively) and (ii) a

multiplicative relationship was assumed between

internal and external preferences i.e. internal
preference was independent of environmental

features.

The weights used for deriving preference func-

tions for paths and groups of paths were related to

residence time and no other variable. This was

linearly related to preference for different cells in

the lattice. Animals were therefore assumed to

have an overview of both the environment and the
relative profitability of paths or groups of paths.

Hence, assumption (i), above, implicitly requires

the existence of memory or some other inherent

mechanism that enables the animals to make

efficient use of their environment. Although the

model invokes no optimality arguments*/me-

chanistic models such as that of Ollason (1980)

can support such assumptions if memory is pre-
sent*/its predictions will be inaccurate if applied

to animals that have no memory, animals with no

previous experience of their environment, or

animals living in rapidly changing environments.

A case in point is the comparison between the

predicted and observed usage distributions in the

simulations of the present paper. The movement

rules used for the individual-based simulation
assumed no memory on the part of the individual.

The simulated animals were only influenced by the

local preference gradient and neither initially had,

nor later gained a global overview of their

environment. This explains why predicted usage

distributions were more widespread and homo-

geneous than observed ones. In the simulation,

animals were quickly captured by local peaks in
the preference function h(x ) close to their trips’

origin whereas, in the model, animals would cross

over less preferred habitat in order to perform an

overall, more profitable path. Real animals ex-

plore (as well as exploit) their environment and

remember (and repeat) profitable paths. Therefore

(Farnsworth and Beecham, 1999), the behaviour

of real animals is likely to be between the two
extremes defined by the ‘short-sighted’ automata

of the simulation and the ‘omniscient’ individuals

implied by assumption (i). The rules of movement

in the simulated animals were selected specifically

in order to create a conservative environment for

validating the model. The fact that, under such

conditions, prediction and observation were in

relative agreement (Figs. 7�/9) is therefore promis-
ing for the successful application of the framework

to real systems.

With reference to assumption (ii), the multi-

plicative relationship between internal and exter-

nal preference for modes of movement would be

incorrect if the realization of internal preference

depends on environmental attributes. Orientation

by environmental cues (e.g. Hölldobler, 1980)
could, for example, cause this. In the most difficult

case, orientation and the spatial distribution of

conspecifics would be coupled. Although internal

preference for movement modes can still exist in

isolation from environmental characteristics (Sé-
guinot et al., 1998; Scharstein, 1990), representing

its interaction with the environment will require a

more elaborate formulation.

7.4. Important issues addressed by this work

The central question in spatial ecology is how

the interaction between the behaviour of indivi-

duals and their environment gives rise to the

observed patterns in the spatial distribution of

populations (Bernstein et al., 1988; Turchin, 1991;
Farnsworth and Beecham, 1999; Wiengand et al.,

1999). The problem can be approached either by

empirical or by process modelling. The different

types of empirical models (reviewed in Guisan and

Zimmermann, 2000) place emphasis on generality

in the model formulation. In, turn this facilitates

model fitting and selection (Pearce and Ferrier,

2000). Process models in spatial ecology place
emphasis on animal behaviour and, as a result,

often take the form of individual-based simula-

tions (e.g. Carter and Finn, 1999; Moorcroft et al.,

1999; South, 1999; Benhamou et al., 1995; Roese

et al., 1991; Ollason, 1983 and reviews by Judson,

1994; Uchmanski and Grimm, 1996).
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Unarguably, there is a gap between the empiri-

cal and process approaches. Although both aim to

model the distribution of animals in space, they

differ in the detail with which they treat the closely

related topic of animal movement. In their major-

ity, empirical models make the equivalent of a

‘perfect mixing’ assumption, where all points in

space (or an arbitrarily delineated region of space)

are freely and equally accessible by all animals.

Recent papers (Rosenberg and McKelvey, 1999;

Huettmann and Diamond, 2001) have pointed out

that this is not a suitable assumption for central-

place foragers. The results of this paper agree with

those of previous authors in that ignoring the

effect of accessibility on usage can seriously bias

the conclusions of an empirical study of habitat

preference. However, the model presented here

goes one step further by acknowledging that

accessibility is not simply a function of distance

from the central place but, also, a function of the

duration, speed and overall sinuosity of move-

ment. The rationale behind a more detailed model

of accessibility is twofold. Firstly, the type of data

relating to accessibility are relatively easy to

obtain. Secondly, given the structural limitations

of empirical models, their input needs to be as

biologically accurate as it can possibly be. For

example, even though it is undoubtedly true that

for a central-place forager accessibility will de-

crease with distance from the central-place (e.g.

Fryxell, 1992; Rosenberg and McKelvey, 1999) it

is not clear whether it does so in the manner

allowed for by the structure of (say) a logistic

regression model.

At the other extreme, individual-based simula-

tions, being an entirely mechanistic approach,

need to incorporate greater detail about the

physiology, mechanics and behaviour of move-

ment. Although it is becoming evident that ana-

lyses of habitat preference must incorporate some

measure of accessibility, detailed assumptions

about individual movement may be difficult to

quantify with the available data, or simply not

required for the derivation of a large-scale,

distribution of expected usage. Such models run

the risk of being over-specific and over-parame-

terised.

Previous authors have recognized that to study
the macroscopic consequences of individual move-

ment, one needs to quantify ‘the distance covered,

the convolutedness or directionality of the track,

and any systematic relationships of the track with

properties of the environment it passes through’

(Marsh and Jones, 1988). In this paper, I have

attempted to describe movement using such a

limited set of variables and assumptions. Conse-
quently, the fundamental assumptions used in the

model are somewhat idealised and can be violated

by specific biological processes or circumstances.

If these are known, then the model can be

modified to incorporate them. For a particular

biological system this gradual increase in specifi-

city will make the model similar to an individual-

based simulation. Until that occurs however, the
generality of the present model will allow it to

generate plausible predictions and use observed

patterns to extract information about processes.

7.5. Further applications

The framework can be used to model usage of

space by animals whose movement is restricted by

time, speed or obstacles. The application to

populations of central-place foragers or colonial

breeders is immediately obvious. Additionally, the
nature of its state variable (usage) means that it

can also be used to generate probabilistic predic-

tions for the position of a single individual. Hence,

if the framework is initialized with two endpoints

and a travel duration, it can be used as a

biologically realistic way of interpolating over

gaps in the observed path of an individual animal.
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Appendix A: Calculating the feasible region for

placing the next point in the path generation

algorithm

The situation is summarised in Fig. 11. Given
the positions (x ? and xƒ) of the two path points

immediately preceding and following the point to

be placed in space (say, at x ) and, also, given the

lengths (l ? and lƒ) of the two path segments

between these three points, we need to determine

the boundaries of the feasible region (the shaded

region in Fig. 11) for the new point, i.e. the region

that satisfies the conditions

kx?�xk0l? (A:1)

kxƒ�xk0lƒ (A:2)

I consider the straight line segment between the

points x ? and xƒ. This has length Dx and forms an

angle u with a fixed frame of reference. I base the

description of the feasible region on the pair of
polar coordinates (r , u�/f ) where r is the distance

of x from x ? and u is the angle formed between r

and Dx (Fig. 11(a)).

Firstly, note that if lƒE/l ?�/Dx then the feasible

region is the entire disc (x ?, l ?). Conversely, if lƒE/

l ?�/Dx then the feasible region is the disc (xƒ, lƒ) .

In all other cases,

jDx� lƒj0r0l? (A:3)

I distinguish two cases, Dx E/lƒ and Dx B/lƒ. It
is straightforward to find the range of angles that,

for a given value of r , give a point within the

feasible region

8 � [8 1(r); 8 2(r)]

where 8 1(r); 8 2(r)

�
�
9tan�1

�
4r2Dx2

(r2 � lƒ2 � Dx2)2
�1

�1=2

if DxElƒ

9

�
p�tan�1

�
4r2Dx2

(lƒ2 � r2 � Dx2)2
�1

�1=2�

if DxB lƒ

(A:4)

In order to choose a point uniformly randomly

from the feasible region a value for r must be

chosen at random from the range given by Eq.
(A.3) according to the probability distribution

f(r)8/81(r). This ensures that all points in the

feasible region (rather than all values of r) have the

same probability of being selected. Then, a value

for 8 can be chosen uniformly randomly from the

range given by Eq. (A.4). A quicker approach is to

choose points at random from within the smallest

rectangle bounding the feasible region and then
reject those that do not fall within the feasible

region.

Appendix B: Correcting for bias in sampling the

paths from a given event space Vm

For fixed endpoint trips and especially for

return trips, the procedure for path generation

described in Algorithm 1 is computationally less

wasteful than a random walk approach. However,
it does not give an unbiased sample of the paths

contained in a given event space Vm. This is

because, unlike a random walk approach, not all

lattice paths of a given type have the same

probability of been generated. Below I discuss

how to correct for this by using a weighting term

Fig. 11. Algorithm 1 generates a path by placing a fixed

number of arbitrarily-ordered points on the plane of movement.

Points that have already been placed during previous iterations

of the algorithm and the pre-determined path length between

any two points in the path restrict the possible positions for

points that are yet to be placed. The feasible region (shaded

area) for a new path point (x ) is determined by the positions of

the two already-positioned points x ? and x ƒ immediately before

and after the new point and the path lengths l ? and l ƒ between

the three path points.
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for each U � /Vm derived from combinatorial argu-

ments.
Consider a decision tree similar to that of Fig.

12. Each level in the tree represents a single

decision. At each node there is a variable number

of options each with equal probability of being

selected. Hence, different routes through the

decision tree can have different probabilities of

being followed. If it is given that routes, rather

than individual decisions, are equiprobable then
the bias caused by the decision process can be

corrected by multiplying each route by the weight

w8
Yk

i�1

wi (B:1)

where wi is the total number of options available

for the ith decision and k is the total number of

decisions made.

The path generation algorithm (Algorithm 1)

introduces bias in the selection of paths in exactly

the same way. The number of options available at

each decision is proportional to the area of the

feasible region. Hence, once it has been generated,
the contribution of a particular path to the spatial

usage resulting from the mode of movement to

which it belongs must first be weighted by

w�
Yn�2

i�1

ai (B:2)

Where ai is the area of the feasible region for the

ith point placed by the algorithm. The area of the

feasible region can be calculated from the results in

Appendix A. Alternatively, it can be approximated
by the area of the smallest rectangle bounding the

feasible region.

Appendix C: Minimum time (tmin(l)) required to do

a path of length l

I begin with a path of length l . By writing the
equation of average speed (V ) as a function of

path length and time V (l , t)�/l /t , it is possible to

examine average speed in terms of scale (either

length or time). The simplest model, assumes that

the animals move at a constant speed (V (l , t )�/

V ). In that case, the minimum time required to do

a path of given length would be tmin(l)�/l /V .

While this idealised situation offers analytical and
computational convenience, it is rarely biologically

realistic.

A more plausible model admits that speed varies

with scale and assumes that the scale-independent

constant is the maximum average speed (Vmax). In

that case, the minimum time required to do a path

of given length would be tmin(l)�/l /Vmax. In many

cases however, maximum average speed is a non-
constant function of scale. Many animals can

maintain higher-than-average speed at small

scales, but at greater scales, their maximum

average speed approaches their overall average

speed. I therefore examine a third model in which

maximum average speed (Vmax(l , t)) is a mono-

Fig. 12. A decision tree of three levels. Each node branches down to a variable number of decisions, each with equal probability

(shown inside the boxes) of being made. The different routes through the tree can have different probabilities (shown at the bottom) of

being followed.
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tonically decreasing function of scale (either length

or time) that asymptotically approaches the ani-

mal’s average speed.

It is then necessary to determine the rate, with

respect to scale, at which this decrease occurs using

a limited amount of fine-scale, movement data.

Typically, such data will consist of sets of posi-

tional observations (sets of coordinates) recorded

at an arbitrary time scale Dt . If the time scale Dt is

fine enough, the displacement between successive

observations (the step length) can be used as an

approximation of the length of the intervening

path segment. Collating all of these measurements

leads to the observed frequency distribution of

step lengths fL(l jDt), at the time scale of data

collection Dt . Estimates of the mean m and

standard deviation s of the true step length

distribution can thus be obtained.

To derive a model for the rate of decrease of

Vmax(l , t) I firstly fix the time scale to a value t�/

Fig. 13. For the simulated animals, the nine possible transitions in the grid (a) give a simple probability distribution for step length (b).

I used 20 paths, each consisting of 20 steps, to obtain an observed sequence of Vmax(k ) (1B/k0/20). I then fitted the model Vmax(k )�/

m�/hs /�k to this sequence of values to obtain h�/1.45 (un-shaded region in (c)). This was then used to extrapolate for the value of the

maximum average speed at greater time scales (shaded region in (c)).
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kDt (k�/2,3,. . .) and define as unfeasible all the
path lengths that cannot be performed given the

animal’s maximum average speed at that time

scale. Repeatedly generating larger path lengths by

randomly selecting samples of size k from the

observed frequency distribution fL(l jDt ) gives a

PDF fL(l jt) of path lengths at the time scale t�/

kDt . The probability density thus allocated to

each value of l is purely a result of combinatorics.
The fact that there is a maximum to the animal’s

average speed at the time scale t means that a

proportion of these path lengths will be unfeasible.

For this model, I assume that, this proportion is a

constant, independent of scale.

The PDF fL(l jDt ) at a time scale t�/kDt (k�/

1), can, using the central limit theorem, be

approximated by N (mk , s�k ). Then, the max-
imum path length that can be performed at a time

scale t is

lmax(k)�mk�hs
ffiffiffi
k

p
(C:1)

In other words, the minimum time required to

perform a path of length l will be given by solving

l�mtmin(l)=Dt�hs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tmin(l)=Dt

p
(C:2)

The required value for tmin(l) will be the smallest

non-negative solution of Eq. (C.2). It is straight-

forward to show that this is

tmin(l)�Dt
2lm� h2s2 � hs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4lm� h2s2

p
2m2

(C:3)

To parameterise (Eq. (C.3)), the average and

sample standard deviation of the step length data
collected at the time scale Dt can be used as

estimates of m and s . The value of h can be

obtained by fitting Vmax(k )�/lmax(k )/k (from Eq.

(C.1)) as the ceiling of a set of fine-scale data. To

illustrate this, I use the example of the random

walkers employed in the simulations of this paper.

The nine possible transitions in the grid (Fig. 13a)

give a simple probability distribution for step
length (Fig. 13b). I used 20 paths, each consisting

of 20 steps, to obtain an observed sequence of

Vmax(k ) (1B/k0/20). I then fitted the model

Vmax(k )�/m�/hs /�k as the ceiling of this se-

quence of values to obtain a value for h . This

was then used to extrapolate for the value of the

maximum average speed at greater time scales

(Fig. 13c).
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