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INTRODUCTION

There is considerable evidence that consumer species
adaptively adjust the nature of their consumption behavior
when they are faced with a choice of two or more food
sources (e.g., Murdoch, 1969; Murdoch and Oaten, 1975;
May, 1977; Abrams, 1987; Tregenza et al., 1996). Such
adjustment can occur through various mechanisms and
at various rates. On a long timescale, organisms can
evolve to have greater or lesser abilities to acquire a
particular resource if the relative abundance of that
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resource changes over the course of a number of con-
sumer generations. On a short timescale, organisms
may change their search mode or their time allocation
to different habitats in order to acquire more of a
particular resource. There are often changes in devel-
opmental characteristics that facilitate finding or cap-
turing particular resources; these occur at intermediate
timescales.

Regardless of their rates, adaptive changes are expected
to increase the relative individual fitness of the consumer at
any given time. However, there has been little considera-
tion of how the dynamics of adaptation affects the
dynamics of the entire consumer�resource system (but
see Comins and Hassell, 1979, 1987; Bernstein, 1988;
Kacelnik et al., 1992; Abrams, 1992, 1999; Abrams and
Matsuda, 1997; Krivan, 1997; van Baalen and Sabelis,
1993). It is common to assume that the instantaneous
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consumption rates of resources by consumers are solely
functions of the current densities of the resources (e.g.,
Murdoch and Oaten, 1975; Comins and Hassell, 1976;
Levin, 1977; Teramoto et al., 1979; Greenwood and
Elton, 1979; Matsuda, 1985, and many others); this
implies instantaneous responses of consumers to changes
in resource density. The omission of the dynamics of
adaptation is important because the population dynamics
of the system affects the relative densities of different
resources. These, in turn, affect the relative fitnesses of
consumers with different choice-related traits. When the
consumer�resource system has a stable equilibrium, such
dynamics will usually only influence the transient
behavior of the system. This has led to a significant
amount of theory based on the idea that organisms that
choose between resources achieve an ``ideal free distribu-
tion'' (Fretwell and Lucas, 1970; Milinski and Parker,
1991; Oksanen et al., 1995) between alternative resources.
At such a distribution, the fitnesses of consumers that
utilize different resources are equal. If the resources have
equal nutritional values and no differences in vulnerability
to capture, the ideal free distribution implies equal densities
of different resources. However, it is not clear that an
ideal free distribution of consumers will characterize the
system's long-term behavior when it does not approach a
stable equilibrium. Many consumer�resource systems are
capable of generating self-sustaining cycles, and long-
term data suggest that sustained fluctuations in popula-
tions are common among natural populations (Ellner
and Turchin, 1995). In these cases, the dynamics of adap-
tation may be a very important determinant of the mean
densities of both consumers and resources, as well as
their patterns of fluctuations (Schwinning and Rosenzweig,
1990; Abrams, 1999).

This article examines the potential consequences of
different types of adaptation in a particular consumer�
resource system, a one-parasitoid�two-host system, using
several simple mathematical models. In particular, we are
interested in determining whether adaptive processes
occurring at different timescales stabilize or destabilize
the population dynamics. In addition, we would like to
determine whether adaptive choice of hosts promotes or
hinders the parasitoid from achieving an ideal free distri-
bution across the two types of host. We will also explore
the consequences of the nature and speed of the adaptive
process for the average difference in the abundances of
the two host species. Other aspects of the system that will
be examined include the qualitative nature of the system

308
dynamics (stable point, cycles, aperiodic fluctuations)
and the indirect effect of one host species on the other.
The results suggest that changing the speed or nature of
the adaptive progress may have large effects on overall
dynamics, mean abundances, and the degree to which an
ideal free distribution is approached. Paradoxically, the
parasitoid's adaptive increase in its consumption of the
more rewarding host species may prevent it from achieving
an ideal free distribution, and may magnify differences
between host densities. There are often major differences
between the consequences of behavioral adaptation within
a generation and adaptive evolution between generations.

MODELS

We consider a parasitoid that can use two noncompeting
host species. There is a tradeoff between the parasitoid's
attack rates on the two hosts, a1 and a2 . In the main set
of analyses, we assume a ``symmetrical'' model. Here, the
two hosts have identical population growth functions,
are equally suitable for parasitoid development, and have
identical vulnerabilities to the parasitoid. In addition, the
relationship between the two attack rates is symmetrical.
We present more limited results for this system when the
two hosts have different growth rate functions. Both
types of system may also represent the dynamics of a
parasitoid attacking two isolated populations of the
same host species. We compare the population dynamics
and densities of the species in this system under three sets
of assumptions about the flexibility of the parasitoid
capture rates:

(i) The attack rates are inflexible, but maximize
individual parasitoid fitness; in the symmetrical system
this means a1=a2 (inflexible generalist parasitoid)

(ii) The attack rates are behaviorally flexible; the
parasitoid adjusts them very rapidly within each genera-
tion based on the availability of hosts to maximize its
fitness (ideal free parasitoid)

(iii) The attack rates are genetically determined
characters and evolve at rates determined by their effects
on fitness and the amount of genetic variation available
(evolving parasitoid).

Two alternative formulations of ``ideal free'' behavior
are examined, and a range of evolutionary rates are
examined.

We describe the interaction using a modified Nicholson�
Bailey model with density dependence in the hosts:

Ni (t+1)=Nt(t) eri (1&Ni(t))&aiP( f ), i=1, 2 (1a)
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P(t+1)

=[b1N1(t)(1&e&a1P(t))+b2N2(t)(1&e&a2 P(t))]

(1b)



Here Ni is the density of host i, exp(ri) is its finite intrinsic
rate of increase, P is the parasitoid density and bi is
the number of adult parasitoids produced by a single
parasitized host of type i. In the symmetrical models, it is
assumed that b1=b2 , and these two parameters are both
scaled to unity. The reproductive rate per host decreases
exponentially with host density. Here we have scaled host
population densities so that each host has a carrying
capacity of Ni=1. This model assumes that parasitized
hosts contribute to density dependence in host reproduc-
tion in the same way as unparasitized hosts. Host mor-
tality during the period of parasitoid activity is assumed
to be insignificant. Equations (1a) and (1b) assume that
the parasitoid has a linear functional response, so hand-
ling time of hosts is insignificant. We also assume that
parasitoids are capable of detecting and avoiding already-
parasitized hosts (i.e., there is no superparasitism). This
assumption makes it possible for parasitoids to adopt an
``ideal free'' exploitation strategy within a generation.
Host density dependence is also assumed to have no
effect on the fitness of parasitoid larva developing within
a host. This last assumption is often appropriate if host
size (which generally decreases with host density) does
not influence the fitness of parasitoid larvae developing
within the host.

In the models investigated here, the trade-off between
capture rates is assumed to be linear and symmetrical, so
a1+a2=A, where A is the maximum attack rate. The
parasitoid's phenotype on this continuum can be
expressed in terms of a single trait, z (0<z<1), which
measures the degree of specialization on host 1, and
where a1=Az and a2=A(1&z). A linear trade-off is
generally appropriate when the two hosts occur in different
places, so that hunting for one precludes encountering the
other. Linear relationships are also expected when hosts
must be encountered using different searching techniques.
In the models of inflexible generalists, z is constant, and
has the value it would have if it were allowed to evolve at
a very slow rate (z=0.5 when the two hosts have identical
growth rates).

In the models of ideal free parasitoids, the parasitoids
are assumed to have instantaneous and accurate knowl-
edge of all of the conditions necessary to make a fitness-
maximizing choice of attack rates. However, there are
two possibilities that must be considered. First, the
parasitoids may have a single period before hosts become
available during which they can fix their phenotype for
the season (choose a habitat patch or specialized mor-
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phology). In this case, an individual's strategy remains
the same over the course of the season, and individual
fitness is maximized under this constraint. The second
alternative is that the parasitoids are capable of adjusting
attack rates during the season. Here, if rates of encounter
with healthy hosts of one type are higher, only that type
will be attacked; when encounter rates are equal, each
host is equally likely to be attacked. The second alter-
native is appropriate when the parasitoid is capable of
changing locations or behaviors rapidly throughout the
season. We consider both possibilities.

When attack rates are fixed during the season, the
optimal strategy of an individual parasitoid depends on
what the rest of the population is doing. Thus, the
optimal set [a1 , a2] (or the optimal z) is found by maxi-
mizing the fitness of a mutant with these characteristic in
a population with mean attack rates [a1*, a2*] or trait z*.
The mutant and resident strategies are then set equal to
each other, and the resultant equation is solved to obtain
the evolutionarily stable strategy (subject to additional
stability conditions). Van Baalen and Sabelis (1993) have
derived ideal free distributions in this case. Assume that
the numbers of parasitoids produced per infected host
(bi) are identical and scaled to unity. Mutant fitness can
then be expressed as the sum over all host species of the
attack rate multiplied by the integral of the number of
unparasitized hosts over the course of the season, yielding

W(a1 , a2)=a1 |
1

0
N1 exp(&a1*Pt) dt

+a2 |
1

0
N2 exp(&a2*Pt) dt

=a1 N1

1&exp(&a1*P)
a1*P

+a2N2

1&exp(&a2*P)
a2*P

. (2)

Assuming that population size is large, the rare mutant's
effect on mean attack rates can be neglected. Maximiza-
tion of the mutant's encounters with unparasitized hosts
over the course of a generation occurs when

da1

dz
N1

1&exp(&a1*P)
a1*P

+
da
dz

N2

1&exp(&a2*P)
a2*P

=0.

(3)

Using the formulas a1=Az and a2=A(1&z), and
setting mutant and resident strategies equal to each
other, leads to the following equation for the optimal z:
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N1

1&exp(&AzP)
z

=N2

1&exp(&A(1&z) P)
(1&z)

. (4)



Unfortunately, this equation lacks a closed-form solution
for the optimal (ideal free) z, but it can easily be solved
numerically. Of course, z is constrained between 0 and 1;
solutions of Eq. (4) <0 imply that z=0 is optimal, while
Solutions >1 imply z=1 is optimal. Figure 1 is an
illustration of the ideal free distribution for host densities
between 0 and their carrying capacity. Formula (4)
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FIG. 1. Proportional choice of host 1 (z) as a function of the densities of
free distributions specified by Eqs. (4) and (5), respectively. The other param
of host densities that predict specialization or near specialization on one hos
implies that the number of parasitized hosts per para-
sitoid is identical for hosts 1 and 2. This will be referred
to as a type 1 or fixed ideal free distribution to distinguish
it from the following case.

Although setting z equal to the solution of Eq. (4)
assumes instantaneous adjustment of this trait, the same
results were obtained from models with a dynamic model

Abrams and Kawecki
the two hosts for parasitoids obeying the type 1 (A) and type 2 (B) ideal
eter is AP=1.5. Larger values of this parameter result in smaller ranges
t.



of parasitoid behavior (Abrams, unpublished). In these
behavioral models, parasitoid individuals sequentially
visit and compare their expected fitnesses in each of the
two patches containing a different host population. The
expected fitness depends on both the number of hosts
in the patch and the number of parasitoids currently in
that patch. Different sets of simulations used different
movement rules that all specified greater probabilities of
moving when the current patch yields a lower expected
fitness than the previously visited one. In all cases, when
the behaviors occurred quickly, the character z quickly
approximated the constrained solution to Eq. (4) within
a season.

The second possible type of behavioral optimization
involves maximization of the attack rate of unparasitized
hosts at all points in time during a season. Assume that
at the beginning of a generation, host 1 is more abundant
than host 2; i.e., N1>N2 . This means that all parasitoids
adopt the maximum possible attack rate on (or forage
exclusively for) N1 when N1 exp(&APt)>N2 . (Here
t varies between 0 and 1 and represents time by the
fraction of the season available for search that has
passed.) If and when some value of t causes both sides
of this inequality to be equal, the parasitoids adopt a
strategy of equal attack rates on both hosts for the
remainder of the season. Similar considerations apply if
the second host is initially more abundant. Time alloca-
tions can be translated directly into our choice variable,
z, which here represents the fraction of time during the
season that an average parasitoid spends foraging for
host 1. In terms of between-generation dynamics, there is
no difference between a single average value of z for the
entire season and a set of several distinct values of z
within the season having the same mean. Unless the two
hosts start a season with identical populations, the first
part of the season is always characterized by specialization
on the more abundant host. The optimal value for z is

z=1 if N1 exp(&AP)>N2

z=0 if N2 exp(&AP)>N1

(5)
z=

1
2 \1+

ln(N1)&ln(N2)
AP +

if N2 exp(&AP)<N1<N2 exp(AP),

where the intermediate values of z represent an average
of specialization for part of the season and equal search-
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ing for both hosts for the remainder. Using this strategy,
the expected rates of encountering healthy hosts of each
type will be equal at the end of the season, if this can
be achieved. The strategy specified by Eqs. (5) will be
referred to as a type 2 or flexible ideal free distribution. It
is illustrated in Fig. 1B for one value of the product, AP;
larger values increase the domain of host densities over
which the optimal z is intermediate between 0 and 1.
Compared to type 1 ideal free strategy, type 2 is charac-
terized by intermediate z values over a wider range of
host densities (see Fig. 1).

In the case of evolving parasitoids, we assume a
standard phenotypic model for evolutionary change in a
quantitative trait having a constant variance. The con-
stant variance assumption cannot apply to the trait z,
discussed above, because z is constrained to lie between
zero and one. Thus, five assume that both z and ai are
mediated by a trait with value x, where

z=exp(#x)�(1+exp(#x)). (6)

The parameter # determines how rapidly z changes with x.
The trait x can take any positive or negative value with
x=0 denoting a generalist with equal consumption rates
of each resource. Each attack rate changes in an S-shaped
manner with x, implying that attack rates must change
slowly when trait values become extreme. The change of
the mean value of x, denoted x� , in one generation is given
by an approximation (Abrams et al., 1993) to the standard
quantitative genetic recursion used by Lande (1976),

x� (i+1)=x� (i)+v
1
W�

dW
dx

, (7)

where W is the fitness of an individual with trait value x
in a population whose mean trait is x� ; W is given by
Eq. (2) with a1=Az and a2=A(1&z) being expressed in
terms of x, using Eq. (6). The parameter v in Eq. (7) is the
additive genetic variance of x. It is easily verified that
dW�dx=#z(1&z) dW�dz, so it is possible to rewrite
Eq. (7) using the substitution

1
W�

dW
dx�

=
#[N1(1&z� )(1&e&Az� P)&N2z� (1&e&A(1&z� ) P)]

[N1(1&e&Az� P)+N2(1&e&A(1&z� ) P)]
; (8)

where all variables are evaluated during generation i. It
can be seen that, at a stable evolutionary equilibrium, the
type 1 ideal free distribution condition must be satisfied
(i.e., setting the numerator of Eq. (8) to zero is equivalent
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to Eq. (4)). It can also be seen that the rate parameter #
can be removed from the system if we scale v by multiply-
ing it by #; thus, # will be dropped (i.e., scaled to unity)
in the following analysis.



Numerical Methods and Their Limitations

Most of the results described below were obtained by
numerical iteration of the systems of difference equations
described above. In all except the evolutionary models,
the symmetrical system (equivalent host growth equa-
tions), can be scaled to reduce the stability determining
parameters to r and A. Thus, the dynamics for all of the
models are summarized for a part of the plane of pairs of
values of r and A. Simulations were carried out for each
parameter combination on a grid with intervals of 0.1 on
the A-axis and 0.025 on the r-axis. The maximum value
of A considered was 10, because higher values usually
resulted in unrealistically low parasitoid densities; the
maximum r was 3.6, for the same reason. Because we
were primarily interested in the ability of adaptation to
equalize the densities of the two hosts, starting condi-
tions were chosen to favor this outcome. Thus, unless
otherwise noted, the simulations assume that initial
population densities and trait value (z) are at their equi-
librium values except that one host has a population 10
greater than its equilibrium. Additional simulations with
one host at an initial density of 0.01 and the other host at
a density of 0.99 were used to look for alternative attrac-
tors. In all simulations, the system was iterated for 20,000
generations, and the population densities from the last
10,000 generations were used to classify the dynamics
and compute mean densities. When the system undergoes
cycles, synchrony of hosts implies that the two hosts
eventually come to have equal densities at any point
in time; asynchrony implies differences between host
densities at a given point in time. In the numerical work,
synchrony was defined as a mean difference between host
densities of less than 10&6 over the last 10,000 genera-
tions. Stable equilibria imply that host densities are equal
when their growth functions are equivalent. The boun-
daries of the region of locally stable internal equilibria
were determined by calculating eigenvalues of the linear
approximation to the system at the equilibrium point.
Boundaries between synchronous and asynchronous
regions were estimated to be at the midpoint between
grid points with these two types of dynamics. More
details are given in the next section when Fig. 2 is presented.

RESULTS

I. Preliminaries: One- and Two-Species
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Subsystems

To understand the dynamic behavior of the three-
species system based on Eqs. (1), it is important to review
what is known of the dynamics of its one- and two-
species subsystems (i.e., a single-host population, or one
host�one parasitoid). Because there can be no choice
without two hosts, none of these subsystems has any
dynamics of traits. The exponential logistic model for the
growth of a single host (or two noninteracting hosts) is
locally stable for r<2. This model is analyzed in May
(1975); it undergoes a series of period doublings as r
is increased above 2, eventually leading to chaotic
behavior. There are windows of periodic behavior within
the chaotic region (May, 1975); these ranges of r result in
an average population density significantly lower than
the nearby values of r that result in chaos.

The parasitoid�one-host model based on Eqs. (1) was
considered by Beddington et al. (1975, 1978), and the
nature of the dynamics when the equilibrium is unstable
was illustrated for several parameter sets by Edelstein�
Keshet (1988). In this case z=1, in Eqs. (1), and the
second host species is absent. Neubert and Kot (1992)
present a more general analysis of several parasitoid�
single-host models with density-dependent host growth.
Kaitala et al. (1999) have recently analyzed a one-host
analogue of Eqs. (1) that differs in having a slightly
nonlinear parasitoid functional response. Local stability
of the equilibrium of Eqs. (1a) and (1b) with both species
present depends upon r and the product Ab. Locally
stable equilibria with all species present are possible for
a range of maximum attack rates Ab between 1 and
slightly larger than 3, provided that r is not too large.
Given our scaling (b=1), all systems lack stable equi-
libria for maximum attack rates, A, greater than approxi-
mately 3.255, regardless of host growth rate. When the
system is unstable, a wide variety of complex dynamics
may occur, depending on parameter values Neubert and
Kot, 1992; Kaitala et al., 1999); there can be dramatic
changes in dynamics with small changes in the values of
either r or Ab. When there is a locally stable equilibrium
point, the point is often not globally stable; this occurs
when r is relatively large (Beddington et al., 1978).

II. A Parasitoid and Two Hosts Characterized
by Identical Parameter Values

The analysis in this article is primarily concerned with
the symmetrical case in which hosts are characterized by
identical parameter values (see Models). Here, the equi-
librium with all three species present has equal host
densities and, therefore, equal attack rates (z=1�2).

Abrams and Kawecki
There are two reasons for concentrating on this rather
special case. First, the parameter space for this case can
be analyzed much more thoroughly than the more general
case with nonequivalent host species. Second, if the



parasitoid is ever able to equalize host densities, it
seemed most likely to do so when both hosts have identi-
cal growth equations.

Inflexible Generalist Parasitoids. The population
dynamics of a system with an inflexible generalist para-
sitoid are governed by Eqs. (1a) and (1b) with bi=1, and
with a1=a2=A�2 (i.e., x=0 or z=0.5). Although
Comins and Hassell (1976) determined the conditions for
local stability in this model (see also Fig. 2), its behavior
when the equilibrium point is locally unstable has
apparently not received detailed consideration. Figure 2
shows the boundaries in parameter space of the region of
local stability of the equilibrium. It also shows the
approximate boundaries of regions where unstable

FIG. 2. Dynamic behaviors in the symmetric model of two hosts
and an inflexible parasitoid as a function of maximum parasitoid attack
rate, A, and host growth rate, r. The labels ``sync'' and ``async'' denote
regions of parameter space where the equilibrium with all species
present is locally unstable, and the two hosts have synchronous
(population densities equal at all times) or asynchronous (unequal
populations), dynamics, respectively. The dashed line separates
parameters producing synchronous host dynamics and those produc-
ing asynchronous host dynamics. The dot-dashed line is the boundary
of parameters that allow a rare parasitoid to increase when the two
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hosts have synchronized dynamics (the most difficult case for invasion
of the parasitoid). Synchronized dynamics occur when the initial host
densities are equal before introduction of the parasitoid. Parameters
above and to the left of this line do not allow invasion in this case. See
the text for more details.
dynamics are characterized by synchronized or asyn-
chronous host densities, as well as parameter values for
which parasitoid extinction can occur.

Figure 2 is only an approximate classification of
population dynamics for several reasons. It is based on
simulations with a grid of parameter values that differ by
0.1 on the A-axis and 0.025 on the r-axis; thus fine details
of the boundaries between different types of dynamics are
not evident. If there is an extremely slow approach to
synchronous dynamics, it may be incorrectly classified
as asynchronous by the numerical criterion described
above. There are also several other important features of
the dynamics that are ignored. First, the figure includes
parameter values that result in extremely low densities of
one or both of the species. When a relatively large A is
combined with small r, the cycles in parasitoid density
are of such high amplitude that they would guarantee
extinction in almost any natural population. For example,
the parasitoid population density drops below 10&16

during the course of a limit cycle for A=5 when r<0.137
or for A=10 when r<0.755. However, the boundary of
this region is not shown on the figure. A second aspect of
dynamics that is not treated in the figure is the presence
of two or more attractors for some sets of parameters.
Alternative attractors are common when r is large
enough that host populations cycle in the absence of the
parasitoid (r>2). In this case, if the initial densities of the
two hosts are identical, their synchronized fluctuations
result in a lower geometric mean parasitoid fitness than
do asynchronous fluctuations. Thus, there is often an
attractor with a positive parasitoid density and an alter-
native with zero density of the parasitoid. Neubert and
Kot (1992) discuss this phenomenon for analogous
single-host�parasitoid models. Parasitoids are unlikely
to persist in a stochastic environment if there exists an
attractor with zero parasitoid density. The dot-dashed
line in Fig. 2 represents the approximate boundary in
parameter space where synchronized host densities will
prevent a parasitoid from increasing when it is rare
(parasitoid invasion fails for some initial host densities
for all parameter combinations above this line). This
boundary is again approximate because of the finite grid
of parameters used for the simulations. Growth rates
were determined by calculating parasitoid fitness when
the parasitoid density was zero and both hosts had equal
initial population sizes. When r> approximately 3.5,
parasitoid abundance dips below 10&16 for all initial
conditions. Thus, persistence in a stochastic environment
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is unlikely for systems with parameter values lying above
and to the left of the dot-dashed line in Fig. 2.

A wide range of dynamics occurs within both the
synchronous and asynchronous regions of parameter



space. For r and A values immediately above the stable
zone, there is a two-point cycle where parasitoid
abundance is constant, but the two hosts alternate
between higher and lower values, 180% out of phase with
each other. For parameters further from the boundary
of the stability region, the parasitoid population begins
to fluctuate as well as the hosts. The cycles may become
very complicated, but even then, each host density
alternates above and below the equilibrium density
each generation. The asynchronous fluctuations that
occur when r is still further above the stable zone
are generally more complicated cycles or aperiodic
fluctuations. The asynchronous fluctuations that occur
when either A or r is large appear to be aperiodic. When
both parameters are large (r>3; A>4.5) there are
periods of almost synchronous fluctuations interrupted
at irregular intervals by periods of highly asynchronous
fluctuations.

Establishing the exact dynamics for different param-
eter values is not required for the main subject of this
investigation. Here, we are primarily concerned with
stability and the mean difference between the two host
densities. The inflexible generalist model reviewed above
shows that asynchronous attractors are possible in
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FIG. 3. The mean difference between the densities of the two hosts when
that host carrying capacity is one. The x-axis shows transformed r values w
of the figure (large A and r) indicate extinction of the parasitoid (the differe
systems where the parasitoid does not exhibit any adap-
tation. At such an attractor, the two hosts differ in
population densities at all times unless initial conditions
specify densities that are exactly equal. This raises the
question whether adaptive host choice based on either
behavior or genetics can synchronize (i.e., equalize) host
populations.

Type 1 Ideal Free Parasitoids. We start by consider-
ing choice based on type 1 ideal free behavior. Analysis is
hindered by the lack of a closed-form solution for the
ideal free value of z as a function of host densities.
However, simulations over the grid in parameter space
used to produce Fig. 2 have failed to reveal any systems
with either a stable equilibrium or synchronized cycles.
The mean difference between the two host densities over
the largest part of this space is shown in Fig. 3. The
values of zero in this figure do not indicate synchroniza-
tion caused by the parasitoid; rather they indicate that
the parasitoid went extinct (minimum density <10&16).
In fact, the parasitoid goes extinct over the entire range
of large A and large r where the inflexible generalist
parasitoid produces asynchronous host dynamics. The
mean difference between host densities is greater than

Abrams and Kawecki
the parasitoid exhibits type 1 ideal free behavioral choice of hosts. Note
ith r ranging from 1.2 to 3.1. The values of zero in the upper rear part

nce between host densities was not measured for these cases).



TABLE I

Mean Difference between Host Densities when A=2 for Inflexible and
Ideal Free Parasitoids

r Inflexible Ideal Free 1 Ideal Free 2

1.1 0 0.370 0
1.5 0 0.560 0
1.75 0 0.665 0.559
2.0 0 0.750 0.748
2.25 0 0.805 0.804
2.5 0 0.845 0.837
2.75 0 0.755 0.705
3.0 0.730 0.665 0.547
3.1 0.734 0.685 0.600
3.2 0.740 0.735 a

3.3 0.748 0.840 a

3.4 0.755 0.970 a

a Predator always goes extinct (population density <10&16 ).

500 of host carrying capacity over most of the range of
parameters shown in Fig. 3. For those parameters where
parasitoid persistence and asynchrony occur in both the
inflexible and type 1 parasitoid models, the mean dif-
ference in host densities is similar in magnitude. This
parameter realm occurs above the stable region in Fig. 2,
and is centered about a maximum attack rate of A=2.
Table I presents the mean difference between host
densities for a range of host growth rates, given a maxi-
mum attack rate of 2; the table presents figures for the
inflexible parasitoid model and for each of the two types
of ideal free behavior. Comparison of the first two
columns shows that, when both the inflexible and type 1
models produce asynchrony in host dynamics, the mean
difference between host densities is larger for the type 1
parasitoid when r>3.2. However, this represents part of
parameter space where parasitoid extinction is probable.
With slightly smaller values of r, the inflexible parasitoid
produces a slightly larger heterogeneity in host densities
than does the type 1 parasitoid.

A range of different dynamics occurs in the unstable
systems characterized by type 1 ideal free behavior. The
relatively low A and r values that produce stable equi-
libria in the inflexible parasitoid are here replaced by
cycles with a period of two generations, where the two
hosts alternate between population sizes above and
below the equilibrium point while the parasitoid density
remains constant. Larger values of either A or r result in
a wide variety of more complicated dynamics. Dynamics
with alternating periods of near synchrony and great
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asynchrony occur with large values of A and r.

Type 2 Ideal Free Parasitoids. Type 2 ideal free behavior,
unlike type 1, permits parasitoids to change their attack
rates within a generation. Such switching is likely if
individuals remain mobile and are able to assess the
density of unparasitized hosts in a patch. Figure 4 is an
approximate classification of the dynamics that occur for
the model of parasitoids with type 2 ideal free behavioral
choice of hosts. This figure was based on the same grid in
parameter space used in Fig. 2, with intervals of 0.1
between adjacent values of A and intervals of 0.025
between adjacent values of r. Unlike type 1 choice, type 2
choice produces a stable equilibrium point for a range of
parameter values. However, behavior again changes the
zones of stability, synchrony and asynchrony compared
to the case of an inflexible parasitoid (Fig. 2). The three
main results that can be seen from a comparison of
Figs. 2 and 4 are as follows: (1) Type 2 ideal free choice
significantly reduces the range of parameters that yield
a stable equilibrium point; this is due to a reduction
in the maximum host growth rate, r, that produces a

FIG. 4. Classification of dynamic behaviors in the symmetric
model of two hosts and a type 2 ideal free parasitoid as a function of
maximum parasitoid attack rate, A, and host growth rate, r. As in Fig. 2
``sync'' and ``async'' denote regions of parameter space where the equi-
librium with all species present is locally unstable, and the two hosts
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have synchronous or asynchronous dynamics, respectively; the dashed
line separates these regions. As in Fig. 2, the dot-dashed line is the
boundary of parameters that allow a rare parasitoid to increase when
the two hosts have synchronized dynamics (the most difficult case for
invasion of the parasitoid).



stable equilibrium for a given maximum attack rate, A.
(2) Type 2 choice significantly increases the range of
parameters producing asynchronous dynamics when
attack rates are low or moderate (A<5). (3) Type 2
choice decreases the range of parameters producing asyn-
chronous dynamics when attack rates are high (A>5).
The biological significance of this loss of asynchrony is
questionable; much of the zone of asynchronous dynamics
at high values of A in Fig. 2 implies extremely low mini-
mum parasitoid densities that would mean extinction in
most populations of realistic size). It is possible for
increased host growth rate to synchronize dynamics
when the parasitoids exhibit ideal free choice (roughly
for A between 3 and 5 and r close to 3). When the para-
sitoid does not have any adaptive plasticity (Fig. 2),
increasing r can only change synchronous fluctuations to
asynchronous ones.

Many possible dynamic patterns occur within the
regions of parameter space labeled synchronous and
asynchronous in Fig. 4. As an example, we consider in
greater detail the dynamics that occur for various host
growth rates when A=3.5. Figure 4 shows that, when
the parasitoids have this attack rate, dynamics switch
from synchronous to asynchronous, and back to
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FIG. 5. Mean densities and difference between host densities as a funct
equivalent host growth rate functions. The parasitoid's maximum attack rat
synchronously as r increases. Figure 5 shows the mean
difference in host densities, the mean parasitoid density,
and the mean density of each host, as r increases from 2.0
to 3.15 (for A=3.5). A difference in host densities of 0
indicates a synchronous attractor. The dynamics for r
between 2.0 and 2.3 are cycles with an approximate
5-generation period whose amplitude varies on a much
longer time scale. At r=2.4, there is an exact period 5
cycle. Two alternative attractors exist when r is close to
2.5; on each attractor the populations undergo a cycle
with a period of 10 generations, with one host having a
mean population density approximately 10 higher than
that of the other host. In the figure, these two densities
were averaged. From r=2.6 through r=3.0 there is an
apparently aperiodic attractor with asynchronous host
dynamics. At still higher host growth rates, small changes
in r can cause dramatic changes in the dynamics of the
system (and in mean population densities). At r=3.025
there is a period 5 cycle with synchronized hosts; at
r=3.075, the only attractor is an aperiodic one with
asynchronous host dynamics; at r=3.15, the parasitoid
goes extinct from all initial densities. There are long-lasting
but transient asynchronous dynamics for some values of
r where the attractor has synchronized hosts (e.g.,
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ion of host intrinsic growth rate for the type 2 ideal free parasitoid and
e is A=3.5.



r=3.1). Figure 5 and the right-most column in Table I
both show that the mean difference between host densities
in asynchronous systems is often a significant fraction of
the host carrying capacity; this is also true for most other
values of A where asynchrony is possible in this model.
Thus, the process of unconstrained and cost-free optimal
foraging by individual parasitoids often increases the
difference between densities of the two hosts.

It is difficult to present simple intuitive reasons for the
asynchrony that can be produced by the parasitoid's
choice of the more rewarding host under either type of
ideal free behavior. However, the potential for ideal free
choice to produce asynchrony can be thought of as a
consequence of overshooting the potential attractor with
equal densities of both hosts. When one host is rare, ideal
free choice greatly reduces the attack rate of this host by
the parasitoid, at the same time that density dependence
is also reduced. As a result, this host species often

FIG. 6. Classification of dynamic behaviors in the symmetric
model of two hosts and an evolving parasitoid with an additive genetic
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variance (v) of 0.25 and a trait�choice slope parameter (#) of 5. The
region of parameter space covered and the meanings of the labels are
identical to those in Figs. 2 and 5. The dot-dashed line is again the
boundary of parameters that allow a rare parasitoid to increase when
the two hosts have synchronized dynamics.
becomes the more abundant species in the following
generation, and the system moves farther from its equi-
librium values. The fact that ideal free choice can equalize
the densities of unparasitized hosts by the end of the
season does not imply equal densities at the start of the
next season because density-dependent reproduction is a
function of densities at the beginning of the season.

Evolving Parasitoids. The next model we consider is
based upon evolutionary change in a quantitative trait
that determines choice (Eqs. (7) and (8)). The dynamics
of this model are sensitive to the additive genetic
variance, v. This parameter may be considered a rate
constant for adaptive change when the basis of the trait
is something other than polygenic inheritance. Dynamics
are sensitive to the shape of the relationship between the
traits and the measure of specialization, z. Larger values
of the shape parameter # in Eq. (6) imply a relationship
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FIG. 7. Classification of dynamic behaviors in the symmetric
model of two hosts and an evolving parasitoid. The system studied is
identical to that illustrated in Fig. 6 except that the additive genetic
variance is smaller; v=0.05.



that is closer to a step function. However, as noted
before, the effects of increasing # are equivalent to
increasing v in the model with equivalent hosts. The size
of the parameter domain producing stability decreases as
the product, #v, increases. Figures 6 and 7 classify the
possible system dynamics for two rates of adaptive
change (v=0.25 in Fig. 6 and v=0.05 in Fig. 7), both
assuming that #=1. The classification for v>0.25 resem-
bles Fig. 6, except that the stability zone is smaller. The
classification for v<0.05 is similar to fig. 7, except that
the boundary between synchronous and asynchronous
behavior is moved to the right (to larger values of A),
implying that synchronous dynamics are more likely.
Relatively rapid adaptation (a large response to selec-
tion) reduces the parameter space that allows local
stability, and tends to produce asynchrony of the two
hosts when the equilibrium is unstable. Conversely,
slower adaptive change increases the parameter domain
with a locally stable equilibrium, and tends to produce
synchronized dynamics when the equilibrium is unstable.
However, a sufficiently large parasitoid attack rate, A,
will produce asynchronous host dynamics in systems
with small values of v#.

When they produce asynchronous host dynamics, the
genetic models often produce large mean differences
between host densities. This is quantified in Table II for

TABLE II

Mean Differences between Host Densities in the Genetic Model
Illustrated in Fig. 7

A

r 4 5 6

0.2 0.0826 0.1524 (Parasitoid extinct)
0.4 0.1143 0.1745 (Parasitoid extinct)
0.6 0.1215 0.1900 0.2224
0.8 0.1308 0.1980 0.2317
1.0 0.1683 0.2039 0.2451
1.2 0.1792 0.2118 0.2546
1.4 0.1771 0.2333 0.2486
1.6 0 0.2775 0.2241
1.8 0 0.2932 0.2904
2.0 0 0.3045 0.3396
2.2 0 0.2973 0.3732
2.4 0 0.2965 0.4126
2.6 0 0 0.2076
2.8 0 0 0.2368
3.0 0 0.0604 0.2765
3.2 0 0.2968 (0.0243)a 0.4313 (0.0960)a
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3.4 0 0.5345 (0.4086)a 0.5741 (0.4405)a

a Figures in parantheses are the comparable figures for an inflexible
generalist parasitoid.
the model with v=0.05, which is employed in Fig. 7. The
table shows how the mean difference between prey
densities changes with increasing host growth rate for
three values of the attack rate A that span much of the
region-of parameter space with realistically bounded
fluctuations. The mean difference between host densities
is frequently a significant fraction of the carrying
capacity. There are several parameter values in Table II
for which the inflexible generalist also generates asyn-
chronous population cycles. The mean difference between
host densities produced by the inflexible generalist is
given in parentheses in Table II for these cases. The
figures indicate that the evolving parasitoid generates a
larger difference between host densities. Simulations
investigating a range of genetic variances have shown
that increasing v may either increase or decrease the
magnitude of the difference between host populations.

In the evolutionary model, the parasitoid's evolution is
actually maladaptive when host densities alternate above
and below the equilibrium each generation. Such alterna-
tion occurs when the maximum attack rate A is below a
threshold magnitude that depends on the other param-
eters of the system. This alternation of the relative
densities of the two hosts ensures that each new genera-
tion of parasitoids will be more adapted to the host that
was more common in the previous generation, but is
currently less common. In such circumstances, one would
expect selection to favor reduction or loss of genetic
variation in the trait that determines attack rates. This
could be achieved by the increase in frequency of
modifier genes that reduce the expression of underlying
genotype-level variation in the phenotype. Such genetic
canalization has been previously proposed in the context
of long-term stabilizing selection (Rendel, 1967; Stearns
and Kawecki, 1994).

III. A Parasitoid and Two Hosts Characterized
by Different Parameter Values

Allowing asymmetries in the basic system described
by Eqs. (1) leads to a huge expansion in the parameter
space that must be analyzed to determine the possible
behaviors of the system. Asymmetries may occur in the
maximum growth rates and�or carrying capacities of the
hosts. Other potential asymmetries involve differences
in the parasitoid's maximum attack rate on each host or
differences in the number of parasitoid progeny produced
by an infected host. It is beyond the scope of the present
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article to give a comprehensive treatment to all of these
models. Instead, we present results for one particular
type of asymmetry, differences in the intrinsic growth rate
of the two hosts. These limited results are important



because they show that adaptive choice of hosts frequently
increases the mean difference between host densities, even
in the biologically more realistic case of nonequivalent
hosts. This also appears to be true of the other types of
asymmetry described above (Abrams, unpublished).
Thus, the main results described in Section II do not
appear to be artifacts of the symmetry of the model.

Some changes in methods are required for asymmetric
systems. When a system is both asymmetrical and
unstable, it is no longer obvious what consumption rates
are optimal for an inflexible parasitoid. The approach
used here was to determine the appropriate values of a1

and a2 using the quantitative genetic model with a very
small genetic variance (in the figures below, v=0.005
with #=5). Thus, the ``inflexible'' parasitoid is actually a
very slowly evolving one, having temporal variation in its
choice trait z that is very small relative to the mean.
Fixing the attack rates at the mean value of z did not
cause a significant difference in the dynamics. No changes
were made in the models with dynamic choice of prey.
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FIG. 8. Mean difference between host densities for each of four types of p
The figure quantifies host heterogeneity across a range of mean host intrin
``inflexible'' parasitoid is a very slowly evolving one, as described in the text.
The value of v used for the evolving parasitoid was
v=0.05 (with #=5). The two types of ideal free para-
sitoids had parameters identical to those used in Figs. 3
and 4. The case with r1=3r2 illustrates the major features
present in most systems with significant asymmetry in r.
This system was iterated for the same grid of values of A
and r̂=(r1+r2)�2 used in Figs. 2 and 4 for all of the types
of models considered above (substituting the case of slow
evolution for the case of an inflexible parasitoid).

Figures 8 through 11 summarize the results of these
simulations by plotting the mean difference between prey
population sizes for each of four different types of
parasitoid; each figure shows a different transect across
the parameter space. There are some sets of parameters
where some types of adaptive choice reduce the difference
between host population sizes compared to a system with
an inflexible parasitoid. However, there is no graph for
which any one of the three types of choice reduces hetero-
geneity in host densities over the majority of the param-
eter range examined. In many cases, behavioral choice
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arasitoid when hosts differ by a factor of 3 in their intrinsic growth rates.
sic growth rates when the maximum attack rate A=1.8. Note that the



results in heterogeneity that is several times larger than
that for the inflexible (slowly evolving) parasitoid. When
the mean host growth rate is relatively large (above
approximately 2), the two ideal free parasitoids produce
heterogeneities in host densities that are much larger
than those generated by the inflexible or evolving para-
sitoid. Behavioral choice significantly reduces hetero-
geneity when mean host growth rate is small and attack
rates are large (see Fig. 10). Comparing systems with
more rapid genetic change to those with very slow
change (labeled ``inflexible'' in Figs. 8�11), a large dif-
ference in the rate of adaptive change (v) has relatively
modest effects on host heterogeneity for most parameter
values; however, the change in host heterogeneity
produced by faster adaptation may be an increase or a
decrease.

Although the stability of equilibria is not noted in
Figs. 8�11, there are some differences in the ranges of
parameter space that yield stable equilibria rather than
sustained fluctuations. As was true in the symmetric

320
FIG. 9. Mean difference between host densities for each of four types of p
The figure quantifies host heterogeneity across a range of mean host intrinsic
The missing data points at high r̂ values indicate that the parasitoid went ex
models, systems with a type 1 ideal free behavior lack
stable equilibria for all of the parameter values in the grid
from A=1 to 10 and r̂=0.2 to 3.5. All other models had
locally stable equilibria when both r̂ and A were suf-
ficiently low (but A>1). For the inflexible and evolving
parasitoids, there were some intermediate ranges of r̂ that
produced stable equilibria although smaller values did
not. For example, the inflexible and evolving parasitoid
produced stable systems for most of the range from r̂=2
to r̂=3 when A=4. Both behavioral models were unstable
over this range. When both systems are unstable, the type 1
ideal free parasitoid produces a larger difference in host
densities than does type 2 for most of parameter space
(although not for an area with large A and small r̂
values). In addition, type 1 behavior was characterized
by the widest range of parameters where the parasitoid
went extinct (see Fig. 11).

These results confirm the main result of Section II; i.e.,
adaptive choice between two hosts by a parasitoid
frequently increases the difference between host densities,
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arasitoid when hosts differ by a factor of 3 in their intrinsic growth rates.
growth rates as in Fig. 8, except that the maximum attack rate A=4.0.

tinct for these attack rates.
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FIG. 10. Mean difference between host densities for each of four typ
rates. The figure quantifies host heterogeneity across a range of maximum

even when the two hosts are equally suitable for parasitoid
development. Preliminary simulations of other asymmetric
systems (hosts with different carrying capacities and
parasitoids with asymmetrical trade offs between attack
rates) also support this generalization.

DISCUSSION

It is both intuitive and widely believed that adaptive
choice of the more common victim type by a predator or
parasitoid will generally make the abundances of the two
(or more) victims more nearly equal than they would
have been without consumer choice. This simple logic
works when consumer fitness depends linearly on victim
abundances and when the densities of the interacting
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species tend toward a stable equilibrium point (Abrams,
1999). However, the results above (and those of Abrams
(1999) for unstable predator�prey models) suggest that
this logic often fails. Here, it fails for two reasons.
of parasitoid when hosts differ by a factor of 3 in their intrinsic growth
arasitoid attack rates, A, when r̂=0.8.

Because the two host abundances influence predator
abundance and attack rates, it is possible for Eq. (2) to
predict unequal host densities at a fitness-maximizing
set of attack rates, even when the trade-off between a1

and a2 is linear and symmetrical. Second, the interaction
modeled here frequently generates cycles, and the predic-
tion of equal host densities does not hold when the
populations of victim and consumer undergo cycles. It is
perhaps not surprising that switching that is slow relative
to the speed of population dynamics can increase the
mean difference between host densities. The parasitoid in
such cases simply cannot track the more rapidly chang-
ing host densities. However, even very rapid switching
can also desynchronize the dynamics of two hosts. There
appear to be several reasons for this. The first is that there
may be resonance or interference between the population
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cycles and the cycles in the trait that determines attack
rate. Intuition is usually insufficient to determine the
quantitative nature of the dynamics of systems with inter-
acting oscillating subsystems. The system discussed here
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FIG. 11. Mean difference between host densities for each of four typ
rates. The figure quantifies host heterogeneity across a range of maximu
points imply that the parasitoid went extinct for these attack rates.

has two different parasitoid�host pairs plus a temporally
varying trait in the parasitoid. It might appear that
sufficiently rapid behavioral change should equalize host
densities, but it often does not. Densities of unparasitized
individuals of the two hosts are frequently equalized at
the end of the season by flexible and adaptive parasitoid
choice (the type 2 ideal free parasitoid). However, this
does not translate into equal host densities in the next
generation, because the reproductive rate of surviving
hosts is based on their density at the beginning of the
season, which is generally not equal for the two species.

The magnitude of the heterogeneity in host densities
that comes about via adaptive choice by parasitoids is
often substantial. Comparing all the models, the mean
difference between host densities was generally maximal
either for the fixed (type 1) ideal free parasitoids or
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for inflexible parasitoids. The area of parameter space
producing asynchrony was maximal for type 1 ideal free
parasitoids, and the area producing stable equilibria was
minimal. When adaptation did decrease the mean
of parasitoid when hosts differ by a factor of 3 in their intrinsic growth
arasitoid attack rates, A, as in Fig. 10 except that r̂=2.6. Missing data

difference in host densities (compared to the inflexible
generalist parasitoid), it usually did so by changing a
pattern of out-of-phase two-generation cycles of the
hosts into one with aperiodic dynamics having a longer
mean period between successive maxima in any variable.
This only occurred for the small range of parameter
space above the stable zone shown in Fig. 2. Even here,
the degree to which heterogeneity was reduced by any
sort of adaptation was modest for most of the adaptive
models over most of the parameter range in question.
The comparison provided in Table I is representative of
these results.

It is worth stressing that many of the results presented
here are dependent on the time of action of density
dependence in host demographic parameters. Here, the
per capita reproduction of healthy hosts at the end of the
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season was determined by the host density at the begin-
ning of the season. This is a reasonable approximation
when parasitized host individuals have mortality and
feeding rates similar to those of unparasitized individuals.



If parasitized hosts greatly decreased their use of limiting
resources, however, density-dependent reproduction
would be more closely related to the number of healthy
hosts at the end of the season. If density dependence only
depended on density at the end of the period of para-
sitoid attack, the type 2 ideal free parasitoids would
rapidly synchronize host densities in systems where the
two hosts had similar reproductive rates. Models with
different types of density dependence require further
analysis.

Bonsall and Hassell (1997, 1998) have experimentally
investigated a two-host�one parasitoid system that has
many features in common with the models discussed
above. The two host populations (Plodia interpunctella
and Ephestia kuehniella) were separated by a mesh that
was only permeable to the parasitoid (Venturia canescens).
This allowed the parasitoid to choose to forage for one or
the other host, but not both. It also ensured that there
was no direct competition for resources between the
hosts. Undivided control chambers containing a single
host and the parasitoid exhibited damped oscillations of
populations toward an equilibrium. The experimental
chambers with both hosts exhibited out-of-phase oscilla-
tions of the hosts ending in the extinction of one of the
host species (E. kuehniella). This system seems to be most
similar to our model with type 2 ideal free choice and
different host growth rates; out-of-phase oscillations are
one of the predicted outcomes for this model. The extinc-
tion of one host is consistent with results from asym-
metric models, which often exhibited much lower
minimum population densities for one of the hosts. This
could easily lead to extinction when population sizes
are finite. The results in Fig. 4 (and similar simulations
of asymmetric systems) suggest that coexistence of
the two hosts could be achieved in this system by
lowering the maximum growth rates of both hosts.
Such an experiment would be easy to carry out, since
reduced growth rates could be achieved by imposing
random mortality on the hosts. Previous theory based
on stable systems with adaptive choice (Holt, 1984)
had suggested that there should be little apparent
competition between the host species. Both the current
theory and Bonsall and Hassell's experiments show
that this is not true in systems that lack a stable
equilibrium.

In natural systems, there are usually many potential
hosts for a generalist parasitoid, and it is not clear to
what extent the results presented here apply. Preliminary
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results for models with three or four hosts suggest that
the generally desynchronizing effects of choice occur in
those cases as well. However, it is possible that large
numbers of hosts may reduce the ability of the parasitoid
to specialize in time. The work by Wilson et al. (1996)
suggests that a formidable array of dynamic complexities
is possible in parasitoid food webs with as few as four or
five species.

The results presented here are framed in terms of two
separate host species. However, there is no mathematical
difference between this case and that of two spatially
isolated populations of the same species, provided that
there is no ``travel cost'' for parasitoid movement between
the two populations. Thus, the models predict that
adaptive patch selection by a parasitoid in a system with
a single host species in isolated patches will frequently
either generate or maintain spatial heterogeneity in host
densities. This is likely even when the landscape is com-
pletely homogeneous and the parasitoid has perfect
knowledge about the densities of unparasitized host
individuals in each patch.

The system consisting of two hosts sharing a para-
sitoid is generally thought to be characterized by apparent
competition (Holt, 1977) between the two hosts via
their effect on the parasitoid (Holt and Lawton, 1993).
The system studied here has two features that affect
the strength of apparent competition: (1) cycles, which
generally tend to reduce the magnitude of apparent
competition (Abrams et al., 1998); and (2) switching,
which also reduces or eliminates apparent competition
in stable systems (Holt, 1984; Abrams and Matsuda,
1996). The combination of both cycles and switching,
however, has been shown to increase apparent competi-
tion when prey populations become desynchronized in
a two-prey�one-predator model (Abrams, 1999). The
synchronization or desynchronization of host densities
in the host�parasitoid models considered here also has
a major effect on the mean densities of victims, with
desynchronization increasing apparent competition.
This will be detailed in a subsequent publication.
However, it is clear that the potentially positive effect
that one host may have on another (by attracting
the parasitoid's searching effort) is negated when
both hosts are seldom present at the same point in
time.

This analysis adds to a growing list of studies
(Bernstein, 1988; Schwinning and Rosenzweig, 1990;
van Baalen and Sabelis, 1993; Abrams, 1999) where
population dynamics can prevent adaptive switching
from equalizing abundances of prey�hosts or from
achieving an ideal free distribution of predator�
parasitoid effort. It would be of interest to reexamine
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the many field studies where ideal free distributions
have not been observed (Kennedy and Grey, 1993) to
determine whether this is the explanation for these
observations.
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