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Accounting for the maintenance of ge- 
netic variation in natural populations has 
been a major goal of population biolo- 
gists. One character that has largely es- 
caped theoretical examination in this re- 
gard is habitat preference. It has been 
established that variation in habitat pref- 
erence can facilitate the maintenance of 
genetic diversity affecting viability (May- 
nard Smith, 1966; Dickinson and An- 
tonovics, 1973; Taylor, 1975, 1976) and 
that natural selection may favor fixation 
of a habitat preference over random hab- 
itat selection in heterogeneous environ- 
ments (Maynard Smith, 1966; Temple- 
ton and Rothman, 1978). However, in 
most of these studies it is assumed that 
variation in habitat preference is envi- 
ronmentally induced (by larval or adult 
conditioning) or that genetic differences 
in preference are indirect, pleiotropic 
manifestations of genetic variation af- 
fecting viability. Theoretical investiga- 
tions of the properties of genetic vari- 
ability affecting only habitat selection 
behavior are virtually nonexistent (but 
see Templeton and Rothman, 1978). It 
is thus not clear under what conditions 
genetic variation in preference itself will 
be maintained. Standard "multiple 
niche" models (Christiansen and Feld- 
man, 1975; Felsenstein, 1976; Hedrick 
et al., 1976) are not obviously applicable 
to studies of habitat preference because 
they assume that genotypes differ in vi- 
ability within a particular habitat rather 
than in habitat preference. 

Several recent investigations on phy- 
tophagous insects have demonstrated that 
populations of many species vary genet- 
ically in host (habitat) preference (Ta- 
bashnik et al., 198 1; Tavormina, 1982; 
Jaenike and Grimaldi, 1983; Via, 1983; 

Lofdahl, 1984). Here I describe and ana- 
lyze a genetic model that can account for 
the maintenance of such variation. The 
model has been cast in terms general 
enough that it should be applicable to 
habitat selection by other organisms, such 
as the settling larvae of marine inverte- 
brates, which in some cases exhibit in- 
dividual variation in substrate preference 
(Meadows and Campbell, 1972). 

I show here that when density-depen- 
dent population regulation occurs inde- 
pendently in different habitats, a form of 
frequency-dependent selection can main- 
tain genetic variation at a single locus 
affecting habitat preference. The condi- 
tions under which variation is main- 
tained are not unduly restrictive. In ad- 
dition, I show that Fretwell's (1972; 
Fretwell and Lucas, 1970) suggestion that 
selection modifies habitat preference in 
such a way as to equalize viabilities in 
different habitats is true if habitat pref- 
erence does not affect fecundity; when 
fecundity is affected, a generalization of 
Fretwell's suggestion to equalization of 
parental investment is valid under cer- 
tain realistic assumptions about how 
variation in preference affects fecundity. 
Finally, I discuss the relevance of these 
results to the process of host race for-
mation and sympatric speciation in phy- 
tophagous insects. 

The Model 
The model is completely deterministic 

and pertains to an animal population 
whose environment is comprised of two 
habitats or niches. Mated females place 
offspring in one or both of the two hab- 
itats. The offspring develop and mature 
in their natal habitat, then mate random- 
ly with respect to habitat of origin. The 
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cycle then repeats itself. Several addi- 
tional assumptions are made: 

(1) The proportion of eggs or offspring 
placed in each habitat is governed by 
a single autosomal locus with two al- 
leles. In particular, AA females place 
a proportion PI,Aa females a pro- 
portion P2, and aa females a pro-
portion P3of their offspring in hab- 
itat I and the remainder in habitat 11. 
The parameters P, can also be inter- 
preted as representing the proportion 
of individuals of genotype i that set- 
tle in habitat I. 

(2) 	Within a habitat, genotypes have 
equal viability. Genotypes may, 
however, differ in fecundity, since 
preference for oviposition in the rar- 
er habitat may decrease oviposition 
rate and hence total number of eggs 
laid. The fecundities of genotypes AA, 
Aa and aa are represented by F , ,  F2, 
and F3respectively. 

(3) 	Population size is regulated indepen- 
dently in the two habitats. In partic- 
ular, habitat I contributes a constant 
fraction c of all individuals in the 
mating pool, whereas habitat I1 con- 
tributes a fraction (1 - e). This as- 
sumption of "soft selection" (Wal-
lace, 1968) is similar to that made by 
Levene (1953) and others subse-
quently (see Christiansen, 1975; Fel- 
senstein, 1976). 

The basic recursion equations for gene 
and genotype frequencies of this system 
are as follows: 

GI, = p - + ( l i , r B ] = p ~  ( la)LC;I 

where A = GIPIF, + (%)G2P2F2, B = 

G,(1 - P, )F ,  + (%)G2(1- P2)F2, M =  
(%)G2P2F2+ G3P,F3, N =  (1/2)G2(1-
P2)F2 + G3(l - P3)F3, TI = A + M ,  
TI, = B + N, GI, G,, and G3 are the ge- 
notype frequencies of AA, Aa, and aa in 
the mating pool, and p is the gene fre- 
quency of A. 

To illustrate the origin of these equa- 
tions; consider the recursion equation for 
GI.  This value is simply the weighted av- 
erage of the genotype frequencies (G',,, 
and G',,,,) of AA in the two groups of 
adults derived from the two habitats: 

G', = cG1,,,+ (1 - c)G',,,,. 

Since, by assumption (2), selection does 
not operate within habitats, G',,, is equal 
to the frequency of AA among offspring 
placed in habitat I by females of the pre- 
vious generation. Mothers with geno-
types AA, Aa, and aa produce respec- 
tively the fractions G,P,F,/T1, G2P2F2/ 
TI, and G3P3F3/T,, of these offspring. Of 
the offspring produced by AA mothers, a 
fraction p will be AA because the mother 
always contributes an A allele to the off- 
spring, whereas the father contributes an 
A allele with a probability equal to the 
gene frequency of A in the population. 
Similarly, of the offspring in habitat I 
produced by Aa mothers, a fraction p/2 
will be AA. No AA offspring are produced 
by aa mothers. Consequently, the pro- 
portion of offspring placed in habitat I 
that are AA is given by 

An 	 analogous expression for G',,,, is 
G',,,, =pB/TII, which when combined 
with (2) to give the average frequency of 
AA in the mating pool yields (la).  Equa- 
tions (1 b-ld) are obtained by similar rea- 
soning. 
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ANALYSISOF THE MODEL 
Equation (Id) implies that at equilib- 

rium p = j7. In turn, equations (1) imply 
that at equilibrium genotype frequencies 
are unchanging and are in Hardy-Wein- 
berg proportions. 

Equilibria of the System 
When gene frequencies are at equilib- 

rium, p' =p and (Id) can be rewritten, 
after factoring out the fixation equilibria 
corresponding to p = 0 and p = 1, as 

where a 1 = P 3 F 3 - P 2 F 2 ,  a 2 = ( 1  -
P3)F3 - (1 - P2)F2, PI = P1F1 + P3F3 -
2P2F2, and P2 = (1 - P,)F, + (1 -

P3)F3- 2(1 - P2)F2. 
Equation (3) represents the most gen- 

eral condition that genetic equilibria of 
the model must satisfy; all internal equi- 
libria of the model correspond to roots 
of (3). In general, (3) is a cubic equation 
and hence explicit expressions for the in- 
ternal equilibria and their stability can 
not be obtained. However, several de- 
ductions can be made about the internal 
equilibria satisfying (3). First, there are 
at most three such equilibria. Second, if 
both fixation equilibria are stable or both 
are unstable, there is an odd number (1 
or 3) of valid internal equilibria, whereas 
if exactly one fixation equilibrium is sta- 
ble, there is an even number (0 or 2). 
Third, computer simulations suggest that 
whenever both fixation equilibria are un- 
stable, each internal equilibrium nearest 
each fixation equilibrium is stable. Fi- 
nally, the stability conditions for the fix- 
ation equilibria are easily derived (see 
Appendix) and are given by 

and 

for p = 0 

Since these inequalities can simulta-
neously fail to be satisfied, there are con- 
ditions under which both fixation equi- 
libria are unstable, i.e., under which 
genetic variation for preference will be 
maintained in the population. 

Analytical solutions for the equilibria 
are obtainable for one class of biologi- 
cally interesting special cases of (3), those 
which satisfy the condition 

This condition holds, for example, if fe- 
cundities of all three genotypes are equal 
or if fecundity is inversely proportional 
to search time (see below). When (4) is 
true, (3) can be reduced to a quadratic 
equation by factoring and two classes of 
equilibria may be recognized, by analogy 
with Uyenoyama and Bengtsson (1979). 
At equilibria of one class, designated 
symmetric, gene frequencies are equal in 
the two habitats, i.e., 

where p, is the gene frequency of A in 
habitat i. In addition to the two fixation 
equilibria, one root of (3) may also be 
symmetric. The remaining equilibria are 
designated asymmetric because at those 
equilibria gene frequencies are unequal 
in the two habitats. 

From (Id) and (5) it can be shown that 
an internal symmetric equilibrium, when 
it exists, is given by 

Moreover, (4) is a necessary and suffi- 
if (P2 - a2) > cient condition for the existence of a non- 
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TABLE1. Existence and stability criteria for equilibria of the mode1.l 

0 Always -@I 
exists (1 - c)Pz 

< P I  if (P2 - a,) > 0 

> pi  if(@,- a,) < o 
(1 - c)P2 

1 Always < p , i f o c , > ~exists (1 - c)P2 

> p, ifcu, < o 
(1 - c)P2 

Ps 0 = FlF3(Pl- P3)- FlF2(Pi- P,) - F2F;,(P2 - P,) > p2 if (P2 - f f2)> 0 
(1 - OP2 

and 

P, > PI ,  P, or P, < P i ,  P, < p, if(@, - a2) < 0 
(1 - c)P2 

c lies within range of values Always 
spanned by p,, p3 and, if p, 

lies within (0, I), p, 
-

' Symbols as defined in Figure 1 .  S t a b ~ l ~ t ycrlterlon for p, holds only when (4) 1s valid. 

fixation symmetric equilibrium, though 
that equilibrium may not lie within (0,l). 
When (4) is valid, p, lies within (0,l) if 
P2> PI,P 3 0 r  P2 < P I ,  P,, i.e., ifthere 
is overdominance for preference. 

When (4) is true, p - (allP1)= p -
(a21P2) may be factored out of (3) to yield 

The valid roots ofthis quadratic equation 
represent the remaining (asymmetric) 
equilibria of the system and are given by 

where R = (P22F22- PlP3F1F3 

Stability of the Equilibria 
The local stability criteria for the equi- 

libria are easily derived (see Appendix) 
and are presented in Table 1. By analogy 
with Uyenoyama and Bengtsson (1979), 

both the existence and stability of all 
equilibria under condition (4) can be rep- 
resented by a simple graphical analysis. 

From (7) it is clear that any asymmetric 
equilibrium satisfies the following equa- 
tion when (4) is true: 

Moreover, under (4), an internal extre- 
mum of the curve 

corresponds to p = p,. This result is ob- 
tained by showing that p, satisfies 
af(p)/ap = 0. 

The equilibria under (4) are thus ob- 
tained by graphing &I) on the interval 
(0,l). The extrema (including fixation 
equilibria) correspond to the symmetric 
equilibria. The value of p at which &I) 
intersects gfp) = K then satisfy (8) and 
hence constitute the asymmetric equilib- 
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FIG.1. Equilibria and stability for various re- 
lationships between the parameters of the model. 
Solid line is function J(p) defined in text. Broken 
line i s h )  = -cp, l( l  - c)P2= K. p I  = P I l ( l  - P I ) .  
p3 = P31(1- P,). p ,  = T,, the value of&) at internal 
symmetric equilibrium (see Appendix). Arrows in- 
dicate direction in which gene frequencies change. 
A through E are cases in which -cp , l ( l  - c)P, > 
0 and hence g(p) acts as an attractor for gene fre- 
quencies. F is a case in which -cp , l ( l  - c)P, < 0 
and in which g(p) acts as a repeller of gene fre- 
quencies. A, P I > P, > P, and K > p , .  B, PI > P2 > 
P, and p, < K < p,. C , P2 > P I ,  P, and K > p,. D ,  
P2 > P I ,  P, and p,, p, < K. E, P2 > P I ,  P,  and K < 
p , ,  p,. F,  P2 > P I ,  P,  and K < 0. 

ria. From the stability criteria it can be 
deduced that, as long as K > 0, the line 
g(P)= K acts as an attractor for gene fre- 
quencies. Consequently, the stability of 
any equilibrium can be determined by 
the position of g(p)= K relative to &) 
(see Fig. 1). Under certain restricted cir- 
cumstances, Kmay be less than zero. The 
line g(p)= K may then act as a repeller 
of gene frequencies (see Fig. I f )  and the 
stability ofthe symmetric equilibria must 
be determined by the criteria listed in 

Table 1. (No asymmetric equilibria exist 
because g(p)= K does not intersect &), 
since &) > 0 always.) 

Special Cases Satisfying (4) 
Equal Fecundities. -Although if hab- 

itats differ in abundance, fecundities of 
genotypes with different habitat prefer- 
ences may also differ because the rate of 
discovery of acceptable habitats will dif- 
fer, this generalization need not always 
be correct. In particular, animals, such as 
many herbivorous insects, that oviposit 
in bouts separated by periods of search- 
ing might compensate for reduced dis- 
covery rates associated with a particular 
preference scheme by simply increasing 
the number of eggs laid per bout and 
thereby maintain an oviposition rate 
equal to that of genotypes with different 
preferences (e.g., Rausher, 19838). An 
important special case of the model is 
thus one in which fecundities of the ge- 
notypes are equal, i.e., F,  = F2 = F,. 

When genotypes have equal fecundi- 
ties, (4) is always valid, and hence all 
asymmetric equilibria are stable. More- 
over, at the asymmetric equilibria, TI + 
TI,= 1 and (8) reduces to c = TI,i.e., the 
proportion of offspring placed in habitat 
I is exactly equal to the proportion of 
individuals in the mating pool that are 
derived from that habitat. Consequently, 
at the asymmetric equilibria survivor- 
ship is the same in both habitats, as pre- 
dicted by Fretwell (1 972; Fretwell and 
Lucas, 1970). 

With no overdominance, i.e., when P2 
lies between P,  and P,, the conditions for 
the existence of an asymmetric equilib- 
rium, and hence for the maintenance of 
genetic variation, reduce to P I  < c < P, 
or P,  > c > P,. In other words, as long 
as one homozygote genotype places a 
fraction larger than c, while the other ho- 
mozygote genotype places a fraction 
smaller than c, of its offspring in habitat 
I, genetic variation for preference will be 
maintained in the population. The re- 
gions of the P I  x P, parameter space that 
allow maintenance of genetic variation 
in preference are thus extensive (Fig. 2). 
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FIG. 2. Regions of parameter space (P,,P,) in 
which polymorphism for habitat preference is 
maintained when F,  = F, = F,. Shaded areas in- 
dicate regions in which a polymorphism is always 
maintained. When there is no overdominance, either 
A or a is fixed, as indicated, in regions I-IV. When 
there is overdominance, a polymorphism will also 
be maintained in regions I11 and IV if P, > P, ,  P, 
and in regions I and I1 if P, < PI,P,. 

Criteria for the existence of a preference 
polymorphism are thus not unduly re- 
strictive. 

With overdominance, P,  < c < P, or 
P, > c > P, remains a sufficient condi- 
tion for maintenance of variation. Vari- 
ation will also be maintained if 1) c > 
P I ,  P, < P, or, 2) c < P,, P, > P, (see Fig. 
2). In case I), if c < P,, there will be two 
stable asymmetric equilibria, at each of 
which survivorship is the same in both 
habitats. By contrast, if c > P,, there is 
only one stable, symmetric equilibrium. 
Since at this equilibrium c = TI ,viabil-
ities in the two habitats are not equal. 
Nevertheless, since f ( p )  = TIIT,, is a 
maximum at this equilibrium, selection 
acts to minimize the discrepancy in vi- 
ability between the two habitats (i.e., to 
minimize the difference between fi)= 

TIIT,,and g(p) = c/(l - c). Similarly, in 
case 2), if c > P,, two stable asymmetric 
equilibria exist, whereas if c < P,, one 
stable symmetric equilibrium exists, at 

which the difference in viability between 
habitats is minimized. 

Fecundity Inversely Proportional to  
Search Time.-As suggested previously, 
fecundities of the three preference ge- 
notypes may differ because habitats differ 
in abundance. The genotype with the 
strongest preference for the less abundant 
habitat is likely to spend more time 
searching than do other genotypes and 
hence is likely to lay fewer eggs before 
dying. One way of modelling the effect of 
search time on fecundity is to assume 
that, on average, an individual searches 
for i period S, prior to ovipositing in 
patch of habitat I and for a period S,, 
before ovipositing in a patch of habitat 
11. The average time searching per egg 
laid is then, for genotype i, 

By letting $J = S,,/S,, it is evident that 

If adults of all genotypes live on average 
a fixed amount of time, L, then the num- 
ber of eggs laid is simply F, = LIS,. Con-
sequently, apart from the proportionality 
constant LIS,, the fecundities of the three 
genotypes are given by 

The parameters S, and S,, can be 
thought of as the amount of parental in- 
vestment (in time units) associated with 
eggs laid in habitats I and 11, respectively. 
The parameter 4 then represents the pa- 
rental investment in an egg laid in habitat 
I1 relative to the investment in an egg 
laid in habitat I. 

When fecundity depends inversely on 
search time in this manner, natural se- 
lection acts to equalize the total parental 
investment per surviving adult in the two 
habitats, i.e., 
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where E, is the total parental investment 
in eggs laid in habitat i. 

This result is derived by noting that 
whenever (9 )  is true, ( 4 ) is true. Conse-
quently, by substituting ( 9 ) into ( 8 ) and 
rearranging, one obtains, at the asym-
metric equilibria, 

TI 
7 = 

TI + TI1 
cf#J--

( 1  - c) + cf#J 
and -

Next, by noting that, in relative units, 
parental investment in offspring placed 
in habitats I and I1 are 1 and 4,respec-
tively, and that T and 1 - 7 are the pro-
portions of offspring placed by the pop-
ulation of mated females in habitats I and 
I1 respectively, one obtains 

and 

Dividing E, by c and El,by (1 - c) then 
yields equal expressions, proving (10).It 
is also easily shown that any stable sym-
metric equilibria represent the locally 
minimal deviation from ( 1  0 ) allowed by 
the genetic constraints of the system. 
Thus, in general, when ( 9 )  holds, selec-
tion acts to move the population toward 
an equilibrium at which parental invest-
ment in the two habitats is proportional 
to the contribution each habitat makes 
to the mating pool. 

The model reported here describes a 
mechanism for maintaining genetic vari-

ation in habitat preference. The forces 
preserving variation in this model arise 
due to a type of frequency-dependent se-
lection that favors the rare allele. These 
forces can be visualized most easily by 
considering the special case in which fe-
cundities of the genotypes are equal. 
Consider first a situation in which allele 
A is near fixation. Most females will be 
AA and most offspring will be placed in 
habitat I. Consequently, density-depen-
dent mortality in habitat I will be high 
and this mortality will affect AA individ-
uals disproportionately, since this geno-
type'is overrepresented in the offspring 
placed in habitat I. By contrast, because 
few offspring are placed in habitat 11,den-
sity-dependent mortality will be low. Be-
cause genotypes Aa and au are overre-
presented in the offspring placed in 
habitat 11, the overall survival probabil-
ity ofthese genotypes will be high relative 
to that of AA. Allele a will therefore in-
crease in frequency. By an analogous ar-
gument, allele A will tend to increase in 
frequency when a is near fixation. 

Jaenike and Grimaldi ( 1  983) have re-
cently reported the existence of genetic 
variation for host preference in Drosoph-
ila tripunctata. Some genotypes prefer to 
oviposit in rotting fruits while others pre-
fer to oviposit on fungi in the genus 
Amanita and related genera. Moreover, 
Grimaldi and Jaenike (1984) have also 
demonstrated the existence of intense 
larval competition within fungal hosts for 
several other related species of mycoph-
agous Drosophila. Although because of 
logistic limitations they have not yet been 
able to examine competitive interactions 
among larvae of D. tripunctata, the re-
sults with the other species suggest they 
are probably intense. Such competition 
in turn is likely to provide strong density-
dependent regulation within larval hab-
itats. At least qualitatively, the D. tri-
punctata system would seem to satisfy 
the assumptions of the model presented 
here; the model may thus provide a valid 
explanation for the maintenance of ge-
netic variation in habitat preference in 
that species. It may also explain similar 
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genetic variation in cactophilic Drosoph- 
ila species (Lofdahl, 1984), in which in- 
terspecific, and hence presumably intra- 
specific, competition among larvae is 
intense (Fellows and Heed, 1972; Man- 
gan, 1982). 

Two conclusions of general relevance 
to field biologists emerge from the anal- 
ysis presented here. First, at evolutionary 
equilibrium there may or may not be a 
correlation between the habitat an indi- 
vidual is collected from and the habitat 
preference of that individual. If a species 
exhibiting variation in habitat preference 
is at an asymmetric equilibrium, such a 
correlation will exist. However. if the 
species is at a stable symmetric equilib- 
rium, which can occur only if there is 
overdominance in preference, then such 
a correlation will not exist because gene 
and genotype frequencies are the same in 
both habitats. Variation in habitat pref- 
erence is thus not automaticallv accom- 
panied by genetic divergence between 
habitats. In fact, the existence of such 
divergence might be used as a criterion 
to determine whether an equilibrium is 
symmetric or asymmetric. 

Second, under a given set of environ- 
mental conditions, there may be two or 
more stable equilibria with very different 
gene frequencies (e.g., Fig. Id). Conse- 
quently, geographic variation in gene fre- 
quencies at loci affecting preference is not 
necessarily due to geographic variation 
in environmental conditions (e.g., rela- 
tive abundances, suitabilities, or carrying 
capacities of different habitats) as is often 
assumed (Singer 197 1, 1982; Gilbert and 
Singer, 1975; Fox and Morrow, 1981; 
Rausher, 1983~) .  

Viability and Parental Investment 
at Equilibrium 

Fretwell (1972; Fretwell and Lucas, 
1970) has suggested that when survivor- 
ship within habitats is density-depen- 
dent, habitat preference will evolve so as 
to ensure equal viabilities of offspring in 
different habitats. This suggestion is based 
on the assumption that habitat selection 
behavior produces an "ideal free distri- 

bution" of individuals among habitats. 
Such a distribution is generated if indi- 
viduals first distribute offspring to the 
habitat in which viability at low density 
is highest and offspring continue to be 
placed in that habitat until increasing 
density-dependent mortality reduces vi- 
ability to a value just equal to that of the 
next-best empty habitat. At that point 
individuals begin placing offspring in each 
habitat in such a way as to maintain equal 
survivorship in the two habitats. While 
several authors (Taylor, 1975, 1976; 
Wiens, 1976; Whitham, 1980) have 
echoed Fretwell's suggestion, it rests on 
the tenuous assumption that behavior of 
individuals without perfect knowledge of 
the distribution of conspecifics among 
habitats can produce an ideal free distri- 
bution (Comins and Hassell, 1979). 

The genetic model presented here, 
which makes no such assumption, sub- 
stantiates Fretwell's suggestion as long as 
preference genotypes do not differ in fe- 
cundity. Under these conditions, at 
asymmetric equilibria, which are always 
stable, the proportion of offspring placed 
into a habitat equals the proportion of 
individuals in the mating pool that are 
derived from that habitat; hence, percent 
survival is the same in all habitats. When 
asymmetric equilibria do not exist, via- 
bilities are not equal at the stable sym- 
metric equilibria, but selection moves the 
system as far toward equalization of vi- 
abilities as the genetic constraints allow. 

When genotypes differ in fecundity, 
equalization of viabilities does not occur 
at any equilibrium. Such equalization 
would not be expected, however, because 
then all genotypes would have equal vi- 
abilities but different fecundities, and 
hence different fitnesses. Nevertheless, 
under conditions represented by (9), a 
generalization of Fretwell's suggestion re- 
mains valid: at equilibrium the total pa- 
rental investment per surviving offspring 
is equal in the two habitats, i.e., E, /c = 

EJ(1 - c). 
This result is reminiscent of Fisher's 

(1 930) well-known theorem regarding the 
equalization of parental investment in 
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males and females at evolutionary equi- 
librium. In fact, the structure and many 
of the properties of this model of habitat 
selection are very similar to those of the 
model of sex ratio evolution described 
by Uyenoyama and Bengtsson (1979). 
The similarities in formal properties of 
these models describing the evolution of 
two very different traits presumably de- 
rive from a basic underlying similarity in 
the processes governing gene frequency 
change in those traits: in both situations, 
two groups of individuals contribute a 
fixed proportion of the individuals in- 
volved in all matings. In the habitat se- 
lection model, the two groups of individ- 
uals are those deriving from the two 
habitats, whereas in any model of the 
evolution of sex ratio in diploid organ- 
isms, the two groups correspond to the 
two sexes, with each sex contributing 
equally to the matings, as first pointed 
out by Fisher (1930). These similarities 
suggest that models describing the evo- 
lution of any other trait sharing this com- 
mon property will exhibit properties and 
dynamics similar to those of the two 
models discussed here. 

Sympatric Speciation in 

Phytophagous Insects 


The importance of sympatric specia- 
tion in the evolution of phytophagous in- 
sects is currently disputed (e.g., see Bush, 
1974, 1975; White, 1978; Futuyma and 
Mayer, 1980; Mayr, 1982). One problem 
that has impeded acceptance of sympat- 
ric speciation as a common phenomenon 
in natural populations has been the dif- 
ficulty of envisioning how genetic vari- 
ation at loci affecting preference and at 
loci affecting viability on different host 
plants could exist simultaneously. For 
example, consider an insect species that 
oviposits only on host I and that has 
maximum possible fitness on host I but 
lower than maximal (though not zero) 
fitness on host 11. If a mutation affecting 
viability arises such that the mutant ge- 
notype has superior fitness on host 11, 
there will be no selection favoring the 

mutant allele because feeding and ovi- 
position behavior will not have been al- 
tered and the mutant individual will use 
only host I. Moreover, since the mutant 
allele will likely have pleiotropic effects 
lowering fitness on host I (Rausher, 
1983a), selection will probably tend to 
eliminate the very variation that would 
permit high survivorship on the novel 
host species. Elimination will usually oc- 
cur even with independent population 
regulation on each host, since the con- 
ditions for maintenance of a polymor- 
phism (harmonic mean overdominance; 
Felsenstein, 1976) are rather stringent. In 
turn, when there arises a mutant allele 
causing oviposition and feeding on host 
11, selection will tend to act against this 
allele because individuals carrying it will 
have relatively low survival and fecun- 
dity on that host. Selection will thus tend 
to eliminate variability at loci affecting 
both preference for and viability on a 
novel host and hence will tend to prevent 
colonization of such a host, the initial 
stage of sympatric speciation. 

Analysis of the model presented here 
indicates that this difficulty in putting to- 
gether variation at two loci diminishes 
greatly if populations are regulated in- 
dependently on each host species. As long 
as fitness on the novel host is not zero, 
mortality on that host due to genetically 
based inability to process its foliage 
("hard" selection) will be compensated 
for by the overall density dependence 
("soft" selection) in population regula- 
tion. Variation in host preference will then 
often be preserved indefinitely, since the 
conditions for maintenance of variation 
in this model are not stringent. Such vari- 
ation will thus often be present when 
variation increasing viability on the nov- 
el host arises. Once both types of varia- 
tion are present, preference and viability 
may evolve together to produce host races 
differentially adapted to the two host 
species. Breakdown of coadapted pref- 
erence-viability gene complexes by re-
combination may then provide selection 
pressures favoring development of re-
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productive isolation between the host 
races by a mechanism similar to that de- 
scribed by Felsenstein (1 98 1). 

SUMMARY 
When density-dependent population 

regulation occurs independently in dif- 
ferent habitats within a mosaic environ- 
ment, a form of frequency-dependent se- 
lection can maintain genetic variation at 
a single locus affecting habitat preference. 
The conditions under which variation is 
maintained are not unduly restrictive. In 
addition, Fretwell's suggestion that se-
lection modifies habitat preference in such 
a way as to equalize viabilities in different 
habitats is true if habitat preference does 
not affect fecundity. When fecundity is 
affected, a generalization of Fretwell's 
suggestion to equalization of parental in- 
vestment is valid under certain realistic 
assumptions about how variation in pref- 
erence affects fecundity. The relevance of 
the analysis to the processes of host race 
formation and sympatric speciation in 
phytophagous insects is discussed briefly. 
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In this appendix I derive the stability conditions for the various equilibria in the model. From equations 
(1) it can be seen that the dynamics of the system can be described in terms of two variables, p and a, 
where 

j j = - + -cA (1 - c ) B  

TI TI, 

and @ = 1 - 8. The recursion equation for a is 

The stability of any equilibrium is ascertained by examining the eigenvalues of the matrix 

evaluated at the equilibrium in question. At all equilibria of the system, this matrix is positive. 
If the absolute value of both eigenvalues is less than 1, then the equilibrium is locally stable. If the 

absolute value of either eigenvalue exceeds 1, then the equilibrium is unstable. Since at all equilibria p = 

p, afl/ap = dp'ldp. The eigenvalues are thus l/2 and l/2 + dpi/ap. Since the matrix is positive, l/2 + dfl/dp 
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is the larger eigenvalue; moreover, by Frobenius' theorem, this eigenvalue is positive. Hence, an equilib- 

rium will be stable if 1 > % + -apt 
l.e.,ap'  

Boundary Equilibria 


For p = 1 ,  ( A .1 )  reduces to 


When F,  = F2 = F,, this condition reduces further to 

0 > (P2 - P1)(c - Pl), 

i.e., the equilibrium with A fixed is stable if PI  < c and PI  > P2 or if PI >c and PI  < P,. Similarly, for 
p = 0, ( A .1 )  reduces to 

and when F,  = F2 = F,, the equilibrium is stable if 0 > (P2- P3)(c- P,), i.e., if P, < c and P, > P2 or 
if P, > c and P3 <P2. 

Symmetric Equilibria 

Substituting (6) into ( A . l )  and simplifying yields the following conditions for stability of the internal 
symmetric equilibrium, when it exists: 

where 

Asymmetric Equilibria when (4) is Valid 


From ( I d ) it can be seen that at equilibrium 


Moreover, it can be shown easily that 

P,F,p + P2F,(1 - 2p) = P I F l p+ P2F2q- '12P2F2, 

( 1  - Pl )F lp+ ( 1  - P2)F2(l- 2 p )  = [ ( I  - P,)Flp  + ( 1  - PJFzq] - ' 4 1  - P,)Fz, 
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Using these relationships, and recognizing that 

( A .1 )  reduces to 

where ol = Fl(Pl - P,) - 2F2(P2- P3),P = FI(P1 - P3)- F,(P2 - P3). 

But q, p, T I and T I ,are always positive, as are the squared terms. Consequently, asymmetric equilibria 
are stable if and only if 

But it can be shown that if 0 < [P IF l- P2F2].[(I- Pl)Fl- ( 1  - P2)F2],then no internal asymmetric 
equilibria exist. Consequently, whenever assymetric equilibria exist, (A.3) is satisfied. Hence, whenever 
an asymmetric equilibrium exists and (6) is true, that equilibrium is stable. 


